VortexDDS
Release 0.1.0

ADLINK

Mar 05, 2018

Contents

1 Install VortexDDS

[.1 0 System reqUirements v v v v v v v e
1.2 LANUX . . e e e e e e e e e e e e e e e e e e e
1.2.1 Ubuntu e e e e e e e e e
1.22 RedHat e e e e
1.23 Tarball e e e e e e
1.2.4 Paths e e e e e
1.3 0 WIndows e e e e e e e e e e e
1.3.1 MSI . . e e e
132 ZIP . e e e e e
1.4 Testyourinstallation e e e e e
1.5 LICENSE v i e e e e e e e

2 Building VortexDDS applications

2.1 Building the Hello World! example i i i e e e e e
2.1.1 BuildFiles e e e e e e
2.1.2 Linux Native Build e e
2.1.3 Windows Native Build e
2.2 Building WithCMake e
22,1 CMaKe e e e e e e e
2.2.2 Hello World! CMake (VortexDDS Package)
2.23 Hello World! Configuration. it i
224 HelloWorld! Build e e
2.3 0 SUmmary . ..o oL e e e e e e e e e e e e e e e e

3 Hello World! in more detail

3.1 Hello World! DataType e
3.1.1 Data-Centric Architecture e
3.2 HelloWorldData.idl e
3.2.1 HelloWorld! IDL e e e e e
3.2.2 Generate Sources and Headers e
3.2.3 HelloWorldData.c & HelloWorldData.h
3.3 Hello World! Business Logic e e
3.3.1 Hello World! Subscriber Source Code e
3.3.2 Hello World! Publisher Source Code,

4 What’s next?

FEENSLUS T NS T (O I N0 I N i N R O R

O 0000 1O\ Lt i i

4.1 The OMG DDS Specification ittt e e e e

4.2 AdLink Documentation and Tutorials e e
4.3 AdLink on Youtube and Slideshare e e
44 AdLinkon Social Media e e e e e
4.5 TheDDS community oo vttt e e e e e e e e e e e
4.6 SUPPOIT . . o o v ot e e e e e e
Uninstalling VortexDDS
5.1 LINUX . . . o o e
5.2 WINdOWS o o o e e e e e
5.2.1 Original MST o e e e e e e e e
522 Apps&features L. e e e e e e e

6 Vortex DDS C API Reference

7 Indices and tables

157

CHAPTER 1

Install VortexDDS

1.1 System requirements

Currently AdLink VortexDDS is supported on the following platforms:

Operating systems | Architecture | Compiler
Ubuntu 16.04 LTS 64-bit gce 5.4 or later
Windows 10 64 -bit VS2015

1.2 Linux

1.2.1 Ubuntu

On Ubuntu and other debian-derived platforms, the product can be installed using a native package.

sudo dpkg -1 vortex-dds_<version>_<architecture>.deb

sudo dpkg -i vortex-dds-dev_<version>_<architecture>.deb

Post install steps

The installation package installs examples in system directories. In order to have a better user experience when
building the VortexDDS examples, it is advised to copy the examples to a user-defined location. This is to be able to
build the examples natively and experiment with the example source code.

For this, the installation package provides the vdds_install_examples script, located in /usr/bin.

Create an user writable directory where the examples should go. Navigate to that directory and execute the script.

Answer ‘yes’ to the questions and the examples will be installed in the current location.

Type vdds_install_examples -h for more information.

VortexDDS, Release 0.1.0

1.2.2 Red Hat

Not supported yet (CHAM-326).

1.2.3 Tarball

For more generic Linux installations, different tar-balls (with the same content) are provided.

Tarball Description
VortexDDS-<version>-Linux.tar.Z | Tar Compress compression.
VortexDDS-<version>-Linux.tar.gz | Tar GZip compression.
VortexDDS-<version>-Linux.tar.sh | Self extracting Tar GZip compression.

By extracting one of them at any preferred location, VortexDDS can be used.

1.2.4 Paths

To be able to run VortexDDS executables, the required libraries (like libddsc.so) need to be available to the executables.
Normally, these are installed in system default locations and it works out-of-the-box. However, if they are not installed
in those locations, it is possible that the library search path has to be changed. This can be achieved by executing the
command:

’ export LD_LIBRARY_PATH=<install_dir>/lib:$LD_LIBRARY_PATH

1.3 Windows

1.3.1 MSI

The default deployment method on Windows is to install the product using the MSI installer.
The installation process is self-explanatory. Three components are available:
1. aruntime component, containing the runtime libraries

2. a development component, containing the header files, the IDL compiler, a precompiled Hello Word! example
and other examples.

3. an examples component, containing the source code of the VortexDDS examples.

The runtime and development components are (by default) installed in “Program Files” while the VortexDDS example
component will be installed in the User Profile directory. The VortexDDS example code in the User Profile directory
can be changed by the user.

1.3.2 ZIP

The Windows installation is also provided as a ZIP file. By extracting it at any preferred location, VortexDDS can be
used.

2 Chapter 1. Install VortexDDS

VortexDDS, Release 0.1.0

Paths

To be able to run VortexDDS executables, the required libraries (like ddsc.dll) need to be available to the executables.
Normally, these are installed in system default locations and it works out-of-the-box. However, if they are not installed
on those locations, it is possible that the library search path has to be changed. This can be achieved by executing the
command:

set PATH=<install_dir>/bin; $PATHS%

Note: The MSI installer will add this path to the PATH environment variable automatically.

1.4 Test your installation

The installation provides a simple prebuilt Hello World! application which can be run in order to test your installa-
tion. The Hello World! application consists of two executables: a so called HelloworldPublisher and a Helloworld-
Subscriber, typically located in /usr/share/VortexDDS/examples/helloworld/bin on Linux and
in C:\Program Files\ADLINK\Vortex DDS\share\VortexDDS\examples\helloworld\bin on
Windows.

To run the example application, please open two console windows and navigate to the appropriate directory in both
console windows. Run the HelloworldSubscriber in one of the console windows by the typing following command:

Windows HelloworldSubscriber.exe
Linux ./HelloworldSubscriber
and the HelloworldPublisher in the other console window by typing:
Windows HelloworldPublisher.exe
Linux ./HelloworldPublisher

The output HelloworldPublisher should look like

es\PrismTech\DDS\share\VortexDDS amplesihelloworld\bin>

while the HelloworldSubscriber will be looking like this

1.4. Test your installation 3

VortexDDS, Release 0.1.0

Bl C\WINDOWS\system32\emd.exe — m| b

mplesihelloworld\bin>HelloworldSubscriber.

Hello World! :'

*xDDS\ mplesihellowor

For more information on how to build this application your own and the code which has been used, please have a look
at the Hello World! chapter.

1.5 License

TODO: CHAM-325

4 Chapter 1. Install VortexDDS

CHAPTER 2

Building VortexDDS applications

2.1 Building the Hello World! example

To test the installation, a small Hello World! application is used. This application will also be used as an introduction
to DDS.

This chapter explains how to build this example, without details regarding the source code. The next chapter will
explain what has to be done to code the Hello World! example.

The procedure used to build the Hello World! example can also be used for building your own applications.

Windows It is advised to have the VortexDDS examples component installed (see Windows installation)
when actively building the VortexDDS examples on Windows. This chapter refers to the VortexDDS
examples installed in the User Profile directory on Windows.

Linux It is advised to have copied the VortexDDS examples to a user-friendly location as described in
this paragraph when actively building the VortexDDS examples on Linux. This chapter refers to the
VortexDDS examples installed in the user-defined location.

2.1.1 Build Files

Three files are available Hello World! root directory to support building the example. Both Windows native (Hel-
loWorld.sln) and Linux native (Makefile) build files will only be available for this Hello World! example. All the other
examples make use of the CMake build system and thus only have the CMakeLists.txt build related file.

2.1.2 Linux Native Build

A Linux native Makefile is provided in the examples/helloworld directory within the destination location
entered in the vdds_install_examples script. In a terminal, go to that directory and type

make

VortexDDS, Release 0.1.0

The build process should have access to the include files and the ddsc library. The Makefile expects them to be present
at system default locations so that it can find them automatically. If this isn’t the case on your machine, then please
update the commented out CFLAGS and LDFLAGS within the Makefile to point to the proper locations.

This will build the HelloworldSubscriber and HelloworldPublisher executables in the helloworld source directory (not
the bin directory that contains the pre-build binaries).

The Hello World! example can now be executed, like described in Test your installation, using the binaries that were
just build. Be sure to use the right directories.

2.1.3 Windows Native Build

For the Windows Native Build, a Visual Studio solution file is available in the examples/helloworld directory.
Use a file explorer to navigate to that directory and double click on the HelloWorld. s1n file. Visual Studio should
now start with the HelloWorld solution that contains three projects.

Project Description

HelloWorldPublisher Information to build the example publisher.
HelloWorldSubscriber | Information to build the example subcriber.
HelloWorldType Information to (re)generate HelloWorldData_Msg data type.

Creating the Hello World! example executables is as simple as selecting the required configuration and building the
solution.

helloworld\vs\directories.props contains the location of where the VortexDDS header files and libraries
are be placed. These locations are based on the default installation directory structure. When VortexDDS is installed
in a different directory, the following paths in helloworld\vs\directories.props should be changed, like:

<VortexDDS_1lib dir>C:/Path/To/VortexDDS/Installation/lib</VortexDDS_ lib dir>

<VortexDDS_inc_dir>C:/Path/To/VortexDDS/Installation/include</VortexDDS_inc_dir>

<VortexDDS idlc dir>C:/Path/To/VortexDDS/Installation/share/VortexDDS/idlc</VortexDDS
—idlc_dir>

To run the example, Visual Studio should run both the publisher and subscriber simultaneously. It is capable of doing
s0, but it’s not its default setting. To change it, open the HelloWorld solution property page by right clicking the solu-
tion and selecting Properties. Then go to Common Properties ->Startup Project,selectMultiple
startup project and set Action "Start" for HelloWorldPublisher and HelloWorldSubscriber. Finish the
change by selecting OK.

Visual Studio is now ready to actually run the Hello World! example, which can be done by selecting Debug ->
Start without debugging. Both the HelloworldSubscriber and the HelloworldPublisher will be started and
the HelloworldPublisher will write a message that is received by the HelloworldSubscriber.

2.2 Building With CMake

In the earlier chapters, building the Hello World! example is done natively. However, the Hello World! example can
also be build using the CMake tool. This is what is recommended. In fact, all the other examples don’t provide native
makefiles, only CMake files.

2.2.1 CMake

CMake is an open-source, cross-platform family of tools designed to build, test and package software. CMake is used
to control the software compilation process using simple platform and compiler independent configuration files, and

6 Chapter 2. Building VortexDDS applications

http://cmake.org
http://cmake.org

VortexDDS, Release 0.1.0

generate native makefiles and workspaces that can be used in the compiler environment of your choice.

In other words, CMake’s main strength is build portability. CMake uses the native tools, and other than requiring
itself, does not require any additional tools to be installed. The same CMake input files will build with GNU make,
Visual studio 6,7,8 IDEs, borland make, nmake, and XCode.

An other advantage of CMake is building out-of-source. It simply works out-of-the-box. There are two important
reasons to choose this:

1. Easy cleanup (no cluttering the source tree). Simply remove the build directory if you want to start from scratch.

2. Multiple build targets. It’s possible to have up-to-date Debug and Release targets, without having to recompile
the entire tree. For systems that do cross-platform compilation, it is easy to have up-to-date builds for the host
and target platform.

There are a few other benefits to CMake, but that is out of the scope of this document.

2.2.2 Hello World! CMake (VortexDDS Package)

After the CMake digression, we’re back with the Hello World! example. Apart from the native build files, CMake
build files are provided as well. See examples/helloworld/CMakeLists.txt

cmake_minimum_required (VERSION 3.5)

if (NOT TARGET VortexDDS::ddsc)
Find the VortexDDS package. If it is not in a default location, try
finding it relative to the example where it most likely resides.
find_package (VortexDDS REQUIRED PATHS "${CMAKE_SOURCE_DIR}/../../")
endif ()

This is a convenience function, provided by the VortexDDS package,
that will supply a library target related the the given idl file.
In short, it takes the idl file, generates the source files with
the proper data types and compiles them into a library.
idlc_generate (HelloWorldData_lib "HelloWorldData.idl")

HH R H K

Both executables have only one related source file.
add_executable (HelloworldPublisher publisher.c)
add_executable (HelloworldSubscriber subscriber.c)

Both executables need to be linked to the idl data type library and

the ddsc API library.

target_link_libraries (HelloworldPublisher HelloWorldData_lib VortexDDS: :ddsc)
target_link_libraries (HelloworldSubscriber HelloWorldData_lib VortexDDS::ddsc)

It will try to find the VortexDDS CMake package. When it has found it, every path and dependencies are auto-
matically set. After that, an application can use it without fuss. CMake will look in the default locations for the
code:VortexDDS package. The VortexDDS package provides the ddsc library that contains the DDS API that the
application needs. But apart from that, it also contains helper functionality (1d1c_generate) to generate library
targets from IDL files. These library targets can be easily used when compiling an application that depends on a data
type described in an IDL file.

Two applications will be created, HelloworldPublisher and HelloworldSubscriber. Both consist only
out of one source file.

Both applications need to be linked to the ddsc library in the VortexDDS package and HelloWorldData_lib
that was generated by the call to idlc_generate.

2.2. Building With CMake 7

VortexDDS, Release 0.1.0

2.2.3 Hello World! Configuration
The Hello World! example is prepared to be built by CMake through the use of its CMakeLists.txt file. The first
step is letting CMake configure the build environment.

It’s good practice to build examples or applications out-of-source. In order to do that, create a build directory in the
examples/helloworld directory and go there, making our location examples/helloworld/build.

Here, we can let CMake configure the build environment for us by typing:

cmake ../

Note: CMake does a pretty good job at guessing which generator to use, but some environments require that you
supply a specific generator. For example, only 64-bit libraries are shipped for Windows, but CMake will generate a
32-bit project by default, resulting in linker errors. When generating a Visual Studio project keep in mind to append
Win64 to the generator. The example below shows how to generate a Visual Studio 2015 project.

cmake -G "Visual Studio 14 2015 Win64"

Note: CMake generators can also create IDE environments. For instance, the “Visual Studio 14 2015 Win64” will
generate a Visual Studio solution file. Other IDE’s are also possible, like Eclipse.

CMake will use the CMakeLists.txt in the helloworld directory to create makefiles that fit the native platform.

Since everything is prepared, we can actually build the applications (HelloworldPublisher and HelloworldSubscriber
in this case).

2.2.4 Hello World! Build

After the configuration step, building the example is as easy as typing:

’cmake ——build .

Note: On Windows, it is likely that you have to supply the config of Visual Studio:

’cmake —--build . --config "Release"

while being in the build directory created during the configuration step: examples/helloworld/build.
The resulting Publisher and Subscriber applications can be found in:

Windows examples\helloworld\build\Release.

Linux examples/helloworld/build.

The Hello World! example can now be executed, like described in Test your installation, using the binaries that were
just build. Be sure to use the right directories.

8 Chapter 2. Building VortexDDS applications

VortexDDS, Release 0.1.0

2.3 Summary

We’ve seen that a VortexDDS application can be build by using a Makefile on Linux or a Visual Studio Solutions on
Windows. Also CMake can be used to build a VortexDDS application. In fact, it is the preferred way of building.

In the end, a predefined way of generating and building the source code should be followed when building VortexDDS
applications. The figure below shows how a typical VortexDDS application is build.

DDS Application
Compilation Implementation

Next chapter will provide an overview of all steps mentioned in the figure above.

2.3. Summary 9

VortexDDS, Release 0.1.0

10 Chapter 2. Building VortexDDS applications

CHAPTER 3

Hello World! in more detail

The previous chapter focused on building the Hello World! example while this chapter will focus on the code itself;
what has to be done to code this small example.

3.1 Hello World! DataType

3.1.1 Data-Centric Architecture

By creating a Data-centric architecture, you get a loosely coupled information-driven system. It emphasizes a data
layer that is common for all distributed applications within the system. Because there is no direct coupling among the
applications in the DDS model, they can be added and removed easily in a modular and scalable manner. This makes
that the complexity of a data-centric architecture doesn’t really increase when more and more publishers/subscribers
are added.

The Hello World! example has a very simple ‘data layer’ of only one data type HelloWorldData_Msg (please read
on). The subscriber and publisher are not aware of each other. The former just waits until somebody provides the data
it requires, while the latter just publishes the data without considering the number of interested parties. In other words,
it doesn’t matter for the publisher if there are none or multiple subscribers (try running the Hello World! example by
starting multiple HelloworldSubscribers before starting a HelloworldPublisher). A publisher just writes the data. The
DDS middleware takes care of delivering the data when needed.

3.2 HelloWorldData.idl

To be able to sent data from a writer to a reader, DDS needs to know the data type. For the Hello World! example,
this data type is described using IDL and is located in HelloWorldData.idl. This IDL file will be compiled by a IDL
compiler which in turn generates a C language source and header file. These generated source and header file will
be used by the HelloworldSubscriber and HelloworldPublisher in order to communicate the Hello World! message
between the HelloworldPublisher and the HelloworldSubscriber.

11

http://www.omg.org/gettingstarted/omg_idl.htm

[R Y S VO SR

VortexDDS, Release 0.1.0

3.2.1 Hello World! IDL

There are a few ways to describe the structures that make up the data layer. The HelloWorld uses the IDL language to
describe the data type in HelloWorldData.idl:

module HelloWorldData
{
struct Msg
{
long userID;
string message;
i
#fpragma keylist Msg userID
}i

An extensive explanation of IDL lies outside the scope of this example. Nevertheless, a quick overview of this example
is given anyway.

First, there’s the module HelloWorldData. Thisis a kind of namespace or scope or similar. Within that module,
there’s the st ruct Msg. This is the actual data structure that is used for the communication. In this case, it contains
auserID and message.

The combination of this module and struct translates to the following when using the c language.

typedef struct HelloWorldData_Msg
{

int32_t userlID;

char * message;
} HelloWorldData_Msg;

When it is translated to a different language, it will look different and more tailored towards that language. This is
the advantage of using a data oriented language, like IDL, to describe the data layer. It can be translated into different
languages after which the resulting applications can communicate without concerns about the (possible different)
programming languages these application are written in.

3.2.2 Generate Sources and Headers
Like already mentioned in the Hello World! IDL chapter, an IDL file contains the description of data type(s). This
needs to be translated into programming languages to be useful in the creation of DDS applications.

To be able to do that, there’s a pre-compile step that actually compiles the IDL file into the desired programming
language.

A java application com.prismtech.vortex.compilers.Idlc is supplied to support this pre-compile step.
This is available in idlc-jar-with—-dependencies. jar

The compilation from IDL into c source code is as simple as starting that java application with an IDL file. In the case
of the Hello World! example, that IDL file is HelloWorldData.idl.

java -classpath "<install dir>/share/VortexDDS/idlc/idlc-jar-with-dependencies. jar"
—com.prismtech.vortex.compilers.Idlc HelloWorldData.idl

Windows The HelloWorldType project within the HelloWorld solution.
Linux The make datatype command.

This will result in new generated/HelloWorldData.c and generated/HelloWorldData.h files that
can be used in the Hello World! publisher and subscriber applications.

12 Chapter 3. Hello World! in more detail

VortexDDS, Release 0.1.0

The application has to be rebuild when the data type source files were re-generated.

Again, this is all for the native builds. When using CMake, all this is done automatically.

3.2.3 HelloWorldData.c & HelloWorldData.h

As described in the Hello World! DataType paragraph, the IDL compiler will generate this source and header file.
These files contain the data type of the messages that are sent and received.

While the c¢ source has no interest for the application developers, HelloWorldData.h contains some information that
they depend on. For example, it contains the actual message structure that is used when writing or reading data.

typedef struct HelloWorldData_Msg
{

int32_t userID;

char * message;
} HelloWorldData_Msg;

It also contains convenience macros to allocate and free memory space for the specific data types.

HelloWorldData_Msg__alloc()
HelloWorldData_Msg_free(d, o)

It contains an extern variable that describes the data type to the DDS middleware as well.

’HelloWorldData_Msg_desc

3.3 Hello World! Business Logic

Apart from the HelloWorldData data type files that the Hello World! example uses to send messages, the Hello World!
example also contains two (user) source files (subscriber.c and publisher.c), containing the business logic.

3.3.1 Hello World! Subscriber Source Code

Subscriber.c contains the source that will wait for a Hello World! message and reads it when it receives one.

#include "ddsc/dds.h"
#include "HelloWorldData.h"
#include <stdio.h>

#include <string.h>
#include <stdlib.h>

/+ An array of one message (aka sample in dds terms) will be used. */
#define MAX_ SAMPLES 1

int main (int argc, char xx argv)

{
dds_entity_t participant;
dds_entity_t topic;
dds_entity_t reader;
HelloWorldData_Msg *msg;
void xsamples[MAX_SAMPLES];
dds_sample_info_t infos[MAX_SAMPLES];
dds_return_t ret;

3.3. Hello World! Business Logic 13

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

VortexDDS, Release 0.1.0

dds_qgos_t *gos;

/+ Create a Participant. =/
participant = dds_create_participant (DDS_DOMAIN_DEFAULT, NULL, NULL);
DDS_ERR_CHECK (participant, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

/* Create a Topic. */

topic = dds_create_topic (participant, &HelloWorldData_Msg_desc,
"HelloWorldData_Msg", NULL, NULL);

DDS_ERR_CHECK (topic, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

/* Create a reliable Reader. =/

gos = dds_gos_create ();

dds_gset_reliability (qos, DDS_RELIABILITY RELIABLE, DDS_SECS (10));
reader = dds_create_reader (participant, topic, gos, NULL);
DDS_ERR_CHECK (reader, DDS_CHECK_REPORT | DDS_CHECK_EXIT);
dds_qgos_delete (gos) ;

printf ("\n=== [Subscriber] Waiting for a sample ...\n");

/+ Initialize sample buffer, by pointing the void pointer within
* the buffer array to a valid sample memory location. #*/
samples[0] = HelloWorldData_Msg__alloc ();

/+ Poll until data has been read. */
while (true)
{
/* Do the actual read.
* The return value contains the number of read samples. #*/
ret = dds_read (reader, samples, infos, MAX_SAMPLES, MAX_SAMPLES) ;
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

/% Check if we read some data and it is valid. =*/
if ((ret > 0) && (infos[0].valid_data))
{

/* Print Message. #*/

msg = (HelloWorldData_Msgx) samples[0];

printf ("=== [Subscriber] Received : ");
printf ("Message (%d, %s)\n", msg->userID, msg->message);
break;

}

else

{
/% Polling sleep. x*/
dds_sleepfor (DDS_MSECS (20));

/+ Free the data location. */
HelloWorldData_Msg_free (samples[0], DDS_FREE_ALL);

/#* Deleting the participant will delete all its children recursively as well.

ret = dds_delete (participant);
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT) ;

return EXIT_SUCCESS;

*/

14

Chapter 3. Hello World! in more detail

VortexDDS, Release 0.1.0

We will be using the DDS API and the HelloWorldData_Msg type to receive data. For that, we need to include the
appropriate header files.

#include "ddsc/dds.h"
#include "HelloWorldData.h"

The main starts with defining a few variables that will be used for reading the Hello World! message. The entities are
needed to create a reader.

dds_entity_t participant;
dds_entity_t topic;
dds_entity_t reader;

Then there are some buffers that are needed to actually read the data.

HelloWorldData_Msg *msg;
void xsamples[MAX_SAMPLES];
dds_sample_info_t info[MAX_SAMPLES];

To be able to create a reader, we first need a participant. This participant is part of a specific communication domain.
In the Hello World! example case, it is part of the default domain.

participant = dds_create_participant (DDS_DOMAIN_DEFAULT, NULL, NULL);

The another requisite is the topic which basically describes the data type that is used by the reader. When creating the
topic, the data description for the DDS middleware that is present in the HelloWorldData.h is used. The topic also
has a name. Topics with the same data type description, but with different names, are considered different topics. This
means that readers/writers created with a topic named “A” will not interfere with readers/writers created with a topic
named “B”.

topic = dds_create_topic (participant, &HelloWorldData_Msg_desc,
"HelloWorldData_Msg", NULL, NULL);

When we have a participant and a topic, we then can create the reader. Since the order in which the Hello World!
Publisher and Hello World! Subscriber are started shouldn’t matter, we need to create a so called ‘reliable’ reader.
Without going into details, the reader will be created like this

dds_gos_t xgos = dds_gos_create ();

dds_gset_reliability (gos, DDS_RELIABILITY_RELIABLE, DDS_SECS (10));
reader = dds_create_reader (participant, topic, gos, NULL);
dds_gos_delete (gos) ;

We are almost able to read data. However, the read expects an array of pointers to valid memory locations. This
means the samples array needs initialization. In this example, we have an array of only one element: #define
MAX_SAMPLES 1. So, we only need to initialize one element.

samples[0] = HelloWorldData_Msg__alloc ();

Now everything is ready for reading data. But we don’t know if there is any data. To simplify things, we enter a
polling loop that will exit when data has been read.

Within the polling loop, we do the actual read. We provide the initialized array of pointers (samples), an array that
holds information about the read sample(s) (info), the size of the arrays and the maximum number of samples to
read. Every read sample in the samples array has related information in the info array at the same index.

ret = dds_read (reader, samples, info, MAX_SAMPLES, MAX_SAMPLES) ;

3.3. Hello World! Business Logic 15

20

21

22

23

24

25

26

27

28

VortexDDS, Release 0.1.0

The dds_read function returns the number of samples it actually read. We can use that to determine if the function
actually read some data. When it has, then it is still possible that the data part of the sample is not valid. This has some
use cases when there is no real data, but still the state of the related sample has changed (for instance it was deleted).
This will normally not happen in the Hello World! example. But we check for it anyway.

if ((ret > 0) && (info[0].valid_data))

If data has been read, then we can cast the void pointer to the actual message data type and display the contents. The
polling loop is quit as well in this case.

msg = (HelloWorldData_Msg*) samples[0];

printf ("=== [Subscriber] Received : ");
printf ("Message (,)y\n", msg->userID, msg->message);
break;

When data is received and the polling loop is stopped, we need to clean up.

HelloWorldData_Msg_free (samples[0], DDS_FREE_ALL);
dds_delete (participant);

All the entities that are created using the participant are also deleted. This means that deleting the participant will
automatically delete the topic and reader as well.

3.3.2 Hello World! Publisher Source Code

Publisher.c contains the source that will write an Hello World! message on which the subscriber is waiting.

#include "ddsc/dds.h"
#include "HelloWorldData.h"
#include <stdio.h>

#include <stdlib.h>

int main (int argc, char xx argv)
{
dds_entity_t participant;
dds_entity_t topic;
dds_entity_t writer;
dds_return_t ret;
HelloWorldData_Msg msg;

/* Create a Participant. =*/
participant = dds_create_participant (DDS_DOMAIN_DEFAULT, NULL, NULL);
DDS_ERR_CHECK (participant, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

/+ Create a Topic. */

topic = dds_create_topic (participant, &HelloWorldData_Msg_desc,
"HelloWorldData_Msg", NULL, NULL);

DDS_ERR_CHECK (topic, DDS_CHECK_REPORT | DDS_CHECK_EXIT) ;

/* Create a Writer. x/
writer = dds_create_writer (participant, topic, NULL, NULL);

printf ("=== [Publisher] Waiting for a reader to be discovered ...\n");

ret = dds_set_enabled_status (writer, DDS_PUBLICATION_MATCHED_STATUS) ;
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

16 Chapter 3. Hello World! in more detail

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

57

58

VortexDDS, Release 0.1.0

while (true)

{
uint32_t status;
ret = dds_get_status_changes (writer, &status);
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

if (status == DDS_PUBLICATION_MATCHED_STATUS) {
break;

}
/* Polling sleep. x/
dds_sleepfor (DDS_MSECS (20));

/+ Create a message to write. */

msg.userID = 1;
msg.message = "Hello World";
printf ("=== [Publisher Writing : ");

]
printf ("Message (%d, %s)\n", msg.userID, msg.message);

ret = dds_write (writer, &msqg);
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT) ;

/+ Deleting the participant will delete all its children recursively as well. x/
ret = dds_delete (participant);
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

return EXIT_SUCCESS;

We will be using the DDS API and the HelloWorldData_Msg type to sent data. For that, we need to include the
appropriate header files.

#include "ddsc/dds.h"
#include "HelloWorldData.h"

Just like with the reader in subscriber.c, we need a participant and a topic to be able to create a writer. We use the
same topic name as in subscriber.c. Otherwise the reader and writer are not considered related and data will not be
sent between them.

dds_entity_t participant;
dds_entity_t topic;
dds_entity_t writer;

participant = dds_create_participant (DDS_DOMAIN_DEFAULT, NULL, NULL);

topic = dds_create_topic (participant, &HelloWorldData_Msg_desc,
"HelloWorldData_Msg", NULL, NULL);

writer = dds_create_writer (participant, topic, NULL, NULL);

The DDS middleware is a publication/subscription implementation. This means that it will discover related readers
and writers (i.e. readers and writers sharing the same data type and topic name) and connect them so that written data
can be received by readers without the application having to worry about it. There is a catch though: this discovery
and coupling takes a small amount of time. There are various ways to work around this problem. The following can
be done to properly connect readers and writers:

» Wait for the publication/subscription matched events

— The Subscriber should wait for a subscription matched event

3.3. Hello World! Business Logic 17

VortexDDS, Release 0.1.0

— The Publisher should wait for a publication matched event.
The use of these events will be outside the scope of this example
* Poll for the publication/subscription matches statusses
— The Subscriber should poll for a subscription matched status to be set
— The Publisher should poll for a publication matched status to be set
The Publisher in this example uses the polling schema.

¢ Let the publisher sleep for a second before writing a sample. This is not recommended since a second may not
be enough on several networks

* Accept that the reader miss a few samples at startup. This may be acceptable in cases where the publishing rate
is high enough.

As said, the publisher of this example polls for the publication matched status. To make this happen, the writer must
be instructed to ‘listen’ for this status. The following line of code makes sure the writer does so.

dds_set_enabled_status (writer, DDS_PUBLICATION_MATCHED_STATUS) ;

Now the polling may start:

while (true)

{
uint32_t status;
ret = dds_get_status_changes (writer, é&status);
DDS_ERR_CHECK (ret, DDS_CHECK_REPORT | DDS_CHECK_EXIT);

if (status == DDS_PUBLICATION_MATCHED_STATUS) {
break;

}
/+ Polling sleep. */
dds_sleepfor (DDS_MSECS (20));

After this loop, we are sure that a matching reader has been started. Now, we commence to writing the data. First the
data must be initialized

HelloWorldData_Msg msg;

msg.userID = 1;
msg.message = "Hello World";

Then we can actually sent the message to be received by the subscriber.

ret = dds_write (writer, &msqg); ‘

After the sample is written, we need to clean up.

ret = dds_delete (participant); ‘

All the entities that are created using the participant are also deleted. This means that deleting the participant will
automatically delete the topic and writer as well.

18 Chapter 3. Hello World! in more detail

CHAPTER 4

What's next?

Want to know more about VortexDDS? Please consider following a tutorial or visit some of the pages listed below.
The Vortex DDS Launcher (provided with this installation) is also a good starting point.

Windows The Vortex DDS Launcher can be started from within the Windows Start Menu

Linux Type ‘vortexddslauncher’ in a console window

4.1 The OMG DDS Specification

PrismTech (aquired by AdLink) has been an active member of the Object Management Group® (OMG®) for over
several years and is heavily involved in the development of the DDS specification. Please visit the OMG website at
http://www.omg.org and specifically the DDS Getting Started page and the DDS specification itself.

4.2 AdLink Documentation and Tutorials

¢ Documentation

¢ DDS Tutorial

4.3 AdLink on Youtube and Slideshare

AdLink is also active on Youtube and Slideshare. Please following the links below to view some interesting videos
and presentations.

¢ Overview
e Vortex Youtube
¢ Vortex Slideshare

¢ Vortex Demo

19

http://www.omg.org
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/spec/DDS/
http://www.prismtech.com/vortex/resources/documentation
http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/index.html
http://www.prismtech.com/vortex/resources/presentations
https://www.youtube.com/channel/UCqADOYgcicDgASLjNxww-Ww
https://www.slideshare.net/prismtech1/presentations
http://www.prismtech.com/vortex/vortex-demo

VortexDDS, Release 0.1.0

4.4 AdLink on Social Media

o Twitter (@ ADLINKTech_usa)
» Facebook

¢ LinkedIn

4.5 The DDS community

e The AdLink DDS-community
e The AdLink DDS Forum

4.6 Support

* Knowledge base

* Support (registered users)

20

Chapter 4. What’s next?

https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH/
https://www.linkedin.com/company/79111/
http://www.prismtech.com/dds-community
http://www.prismtech.com/dds-community/community-interaction
https://kb.prismtech.com/
http://www.prismtech.com/support

CHAPTER B

Uninstalling VortexDDS

5.1 Linux

Uninstalling VortexDDS on Linux can be established by invoking the following two commands (of which the first is
optional):

sudo dpkg ——remove vortex-dds-dev
sudo dpkg —-remove vortex-dds

Note: Mind the order in which these commands are run. The development package (vortex—dds—dev) need to
be removed first since it depends on the library version (vortex—-dds).

5.2 Windows

There are two ways to uninstall VortexDDS from Windows
1. By using the original VortexDDS MSI file

2. By using Windows “Apps & features”

5.2.1 Original MSI

Locate the original VortexDDS MSI file on your system and start it. After clicking Next, an overview of options
appears, amongst which is the remove option. By clicking Remove, all files and folders are removed, except the
VortexDDS examples (if installed).

21

VortexDDS, Release 0.1.0

5.2.2 Apps & features

Go to Windows Settings by clicking the Settings-icon (#) in the Windows Start Menu. Choose Apps in
the Windows Settings screen. A list of all installed apps and programs pops up. Select VortexDDS and choose
Uninstall. All installed files and folders will be removed, except the VortexDDS examples (if installed).

22 Chapter 5. Uninstalling VortexDDS

CHAPTER O

Vortex DDS C API Reference

struct dds_aligned allocator

Public Members

void *(*alloc) (size_t size, size_t align)
void (*£ree) (size_t size, void *ptr)

struct dds_allocator

Public Members

void *(*malloc) (size_t size)
void *(*realloc) (void *ptr, size_t size)
void (*£ree) (void *ptr)

struct dds_history_ gospolicy
#include <dds_public_qos.h> History QoS: Applies to Topic, DataReader, DataWriter

Public Members

dds_history_kind_t kind
int32_t depth

struct dds_inconsistent_topic_status
#include <dds_public_status.h> DCPS_Status_InconsistentTopic

23

VortexDDS, Release 0.1.0

Public Members

uint32_ttotal count
int32_t total_count_change

struct dds_key_descriptor

Public Members

const char *m_name
uint32_tm_index

struct dds_liveliness_changed_status
#include <dds_public_status.h> DCPS_Status_LivelinessChanged

Public Members

uint32_talive_ count

uint32_t not_alive_count
int32_talive_count_change
int32_tnot_alive_count_change
dds_instance_handle_t last_publication_handle

struct dds_liveliness_lost_status
#include <dds_public_status.h> DCPS_Status_LivelinessLost

Public Members

uint32_t total_count
int32_t total_count_change

struct dds_offered deadline_missed status
#include <dds_public_status.h> DCPS_Status_OfferedDeadlineMissed

Public Members

uint32_t total_count
int32_t total_count_change
dds_instance_handle t last _instance_ handle

struct dds_offered_ incompatible_gos_status
#include <dds_public_status.h> DCPS_Status_OfferedIncompatible QoS

24 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Public Members

uint32_ttotal count
int32_t total_count_change
uint32_t last_policy_id

struct dds_publication_matched_ status
#include <dds_public_status.h> DCPS_Status_PublicationMatched

Public Members

uint32_ttotal count

int32_t total_count_change

uint32_t current_count

int32_t current_count_change
dds_instance_handle_t last_subscription_handle

struct dds_requested_deadline _missed_status
#include <dds_public_status.h> DCPS_Status_RequestedDeadlineMissed

Public Members

uint32_t total_count
int32_t total_count_change
dds instance_handle t last _instance_ handle

struct dds_requested_incompatible_gos_status
#include <dds_public_status.h> DCPS_Status_RequestedIncompatibleQoS

Public Members

uint32_t total_count
int32_t total_count_change
uint32_t last_policy_ id

struct dds_resource_limits_gospolicy
#include <dds_public_qgos.h> ResourceLimits QoS: Applies to Topic, DataReader, DataWriter

Public Members

int32_tmax_samples
int32_tmax_instances

int32_tmax_samples_per_ instance

25

VortexDDS, Release 0.1.0

struct dds_sample_info
#include <dds.h> Contains information about the associated data value

Structure dds_sample_info_t - contains information about the associated data value

1. sample_state - dds_sample_state_t
. view_state - dds_view_state_t

2
3. instance_state - dds_instance_state_t
4

. valid_data - indicates whether there is a data associated with a sample

¢ true, indicates the data is valid

 false, indicates the data is invalid, no data to read

. instance_handle - handle to the data instance

. publication_handle - handle to the publisher

O ® 9 O W

ALIVE

. source_timestamp - timestamp of a data instance when it is written

disposed_generation_count - count of instance state change from NOT_ALIVE_DISPOSED to ALIVE

no_writers_generation_count - count of instance state change from NOT_ALIVE_NO_WRITERS to

10. sample_rank - indicates the number of samples of the same instance that follow the current one in the

collection

11. generation_rank - difference in generations between the sample and most recent sample of the same in-

stance that appears in the returned collection

12. absolute_generation_rank - difference in generations between the sample and most recent sample of the

same instance when read/take was called

13. reception_timestamp - timestamp of a data instance when

Public Members

dds_sample_state_t sample_state
Sample state

dds view_state_t view_state
View state

dds_instance_state_t instance_state
Instance state

bool valid data
Indicates whether there is a data associated with a sample

e true, indicates the data is valid
¢ false, indicates the data is invalid, no data to read

dds_time_t source_timestamp
timestamp of a data instance when it is written

dds_instance_handle_t instance_handle
handle to the data instance

dds_instance_handle_t publication_handle
handle to the publisher

it is added to a read queue

26

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

uint32_t disposed_generation_count
count of instance state change from NOT_ALIVE_DISPOSED to ALIVE

uint32_t no_writers_generation_count
count of instance state change from NOT_ALIVE_NO_WRITERS to ALIVE

uint32_t sample_rank
indicates the number of samples of the same instance that follow the current one in the collection

uint32_t generation_rank
difference in generations between the sample and most recent sample of the same instance that appears in

the returned collection

uint32_t absolute_generation_rank
difference in generations between the sample and most recent sample of the same instance when read/take

was called

dds_time_t reception_timestamp
timestamp of a data instance when it is added to a read queue

struct dds_sample_lost_status
#include <dds_public_status.h> DCPS_Status_SampleLost

Public Members

uint32_t total_count
int32_t total_count_change

struct dds_sample_rejected_status
#include <dds_public_status.h> DCPS_Status_SampleRejected

Public Members

uint32_t total_count

int32_t total_count_change
dds_sample_rejected_status_kind last_reason
dds instance_handle t last _instance_ handle

struct dds_sequence

Public Members

uint32_t _maximum
uint32_t _length
uint8_t * buffer
bool _release

struct dds_stream

27

VortexDDS, Release 0.1.0

Public Members

dds_uptr_t m_buffer
size_tm_size
size_tm_index
boolm_endian

boolm_ failed

struct dds_subscription_matched_status
#include <dds_public_status.h> DCPS_Status_SubscriptionMatched

Public Members

uint32_t total_count

int32_t total_count_change

uint32_t current_ count

int32_t current_count_change
dds_instance_handle_t last_publication_handle

struct dds_topic_descriptor

Public Members

const size tm _size

const uint32_tm_align

const uint32_tm_flagset

const uint32_tm_nkeys

const char *m_typename

const dds_key_descriptor_t *m_keys
const uint32_tm_nops

const uint32_t *m_ops

const char *m_meta

union dds_uptr_t

Public Members

uint8_t *p8
uint16_t *pl6
uint32_t *p32
uint64_t *p64
float *p£

28 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

double *pd
void *pv

filedds.h
#include “os/os_public.h”#include “ddsc/dds_export.h”#include “ddsc/dds_public_stream.h’ #include
“ddsc/dds_public_impl.h"#include “ddsc/dds_public_alloc.h”#include “ddsc/dds_public_time.h”#include
“ddsc/dds_public_qos.h”#include “ddsc/dds_public_error.h”#include “ddsc/dds_public_status.h”#include

“ddsc/dds_public_listener.h”#include “ddsc/dds_public_log.h”#include “dds_dcps_builtintopics.h” C DDS
header.

Communication Status definitions

DDS_INCONSISTENT_ TOPIC_STATUS
Another topic exists with the same name but with different characteristics.

DDS_OFFERED_DEADLINE_MISSED_STATUS
The deadline that the writer has committed through its deadline QoS policy was not respected for a specific
instance.

DDS_REQUESTED_DEADLINE_MISSED_STATUS
The deadline that the reader was expecting through its deadline QoS policy was not respected for a specific
instance.

DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
A QoS policy setting was incompatible with what was requested.

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
A QoS policy setting was incompatible with what is offered.

DDS_SAMPLE_LOST_STATUS
A sample has been lost (never received).

DDS_SAMPLE_REJECTED_STATUS
A (received) sample has been rejected.

DDS_DATA_ON_READERS_STATUS
New information is available.

DDS DATA AVAILABLE STATUS
New information is available.

DDS_LIVELINESS_LOST_ STATUS
The liveliness that the DDS_DataWriter has committed through its liveliness QoS policy was not respected;
thus readers will consider the writer as no longer “alive”.

DDS_LIVELINESS_CHANGED_STATUS
The liveliness of one or more writers, that were writing instances read through the readers has changed.
Some writers have become “alive” or “not alive”.

DDS_PUBLICATION_MATCHED_STATUS
The writer has found a reader that matches the topic and has a compatible QoS.

DDS_SUBSCRIPTION_MATCHED_STATUS
The reader has found a writer that matches the topic and has a compatible QoS.

29

VortexDDS, Release 0.1.0

Typedefs

typedef enumdds_sample_state dds_sample_state_t
Read state for a data value

typedef enumdds_view_state dds_view_state_t
View state of an instance relative to the samples

typedef enum dds_instance_state dds_instance_state_t
Defines the state of the instance

typedef struct dds_sample_info dds_sample_info_t
Contains information about the associated data value

typedef bool (*dds_topic_filter_f£fn) (const void *sample)
Topic filter function

typedef bool (*dds_querycondition_filter_f£n) (const void *sample)

typedef intptr_tdds_attach_t
Waitset attachment argument.

Every entity that is attached to the waitset can be accompanied by such an attachment argument. When
the waitset wait is unblocked because of an entity that triggered, then the returning array will be populated
with these attachment arguments that are related to the triggered entity.

Enums

enum dds_sample_state
Read state for a data value

Values:

DDS_SST_READ = lu
DataReader has already accessed the sample by read

DDS_SST_NOT_READ =2u
DataReader has not accessed the sample before

DDS_SST_READ = lu
DDS_SST_NOT_READ =2u

enum dds_view_state
View state of an instance relative to the samples

Values:

DDS_VST_NEW =4u
DataReader is accessing the sample for the first time when the instance is alive

DDS_VST_OLD = 8u
DataReader accessed the sample before

DDS_VST NEW = 4u
DDS_VST_OLD = 8u

enum dds_instance_state
Defines the state of the instance

Values:

30 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_IST_ALIVE = 16u
Samples received for the instance from the live data writers

DDS_IST_NOT_ALIVE_DISPOSED =32u
Instance was explicitly disposed by the data writer

DDS_IST_NOT_ALIVE_NO_WRITERS = 64u
Instance has been declared as not alive by data reader as there are no live data writers writing that
instance

DDS_IST_ALIVE = 16u
DDS_IST_NOT_ALIVE_DISPOSED = 32u

DDS_IST_NOT_ALIVE_NO_WRITERS = 64u

Functions

typedef _Return_type_success_ (return >= 0)
Return code indicating success (DDS_RETCODE_OK) or failure. If a given operation failed the value
will be a unique error code and dds_err_nr() must be used to extract the DDS_RETCODE_* value.

typedef _Return_type_success_ (return, 0)
Handle to an entity. A valid entity handle will always have a positive integer value. Should the
value be negative, the value represents a unique error code. dds_err_nr() can be used to extract the
DDS_RETCODE_* value.

DDS_EXPORT dds_domainid t dds_domain_default (void)
Returns the default domain identifier.

The default domain identifier can be configured in the configuration file or be set through an evironment
variable (VORTEX_DOMAIN).
Return Default domain identifier

_Pre_satisfies_ (entity &0x7F000000)
Enable entity.

Get the topic.

Checks whether the entity has one of its enabled statuses triggered.

This operation takes an instance handle and return a key-value corresponding to it.
This operation takes a sample and returns an instance handle to be used for subsequent operations.
Get the domain id to which this entity is attached.

Get entity children.

Get entity participant.

Get entity parent.

Set entity listeners.

Get entity listeners.

Set entity QoS policies.

Get entity QoS policies.

Set status enabled on entity.

31

VortexDDS, Release 0.1.0

Get enabled status on entity.

Get changed status(es)

Read the status set for the entity.

Returns the instance handle that represents the entity.
Delete given entity.

This operation enables the dds_entity_t. Created dds_entity_t objects can start in either an enabled or
disabled state. This is controlled by the value of the entityfactory policy on the corresponding parent
entity for the given entity. Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet activated, so it is still
possible to change their immutable QoS settings. However, once activated the immutable QoS settings can
no longer be changed. Creating disabled entities can make sense when the creator of the DDS_Entity does
not yet know which QoS settings to apply, thus allowing another piece of code to set the QoS later on.

Note Delayed entity enabling is not supported yet (CHAM-96).

The default setting of DDS_EntityFactoryQosPolicy is such that, by default, entities are created in an
enabled state so that it is not necessary to explicitly call dds_enable on newly-created entities.

The dds_enable operation produces the same results no matter how many times it is performed. Calling
dds_enable on an already enabled DDS_Entity returns DDS_RETCODE_OK and has no effect.

If an Entity has not yet been enabled, the only operations that can be invoked on it are: the ones to set,
get or copy the QosPolicy settings, the ones that set (or get) the Listener, the ones that get the Status
and the dds_get_status_changes operation (although the status of a disabled entity never changes). Other
operations will return the error DDS_RETCODE_NOT_ENABLED.

Entities created with a parent that is disabled, are created disabled regardless of the setting of the entity-
factory policy.

If the entityfactory policy has autoenable_created_entities set to TRUE, the dds_enable operation on the
parent will automatically enable all child entities created with the parent.

The Listeners associated with an Entity are not called until the Entity is enabled. Conditions associated
with an Entity that is not enabled are “inactive”, that is, have a trigger_value which is FALSE.

This operation will delete the given entity. It will also automatically delete all its children, childrens’
children, etc entities.

Return A dds_return_t indicating success or failure.
Parameters

* entity: The entity to enable.
Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

* DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The parent of the given Entity is not enabled.

This operation reads the status(es) set for the entity based on the enabled status and mask set. It does not
clear the read status(es).

Return A dds_return_t indicating success or failure.

32

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity to delete.
Return Value
* DDS_RETCODE_OK: The entity and its children (recursive are deleted).
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Parameters
* entity: Entity of which to get the instance handle.
e ihdl: Pointer to dds_instance_handle _t.
Return Value
* DDS_RETCODE_OK: Success.
e DDS_RETCODE_ERROR: An internal error has occurred.

This operation reads the status(es) set for the entity based on the enabled status and mask set. It clears the
status set after reading.

Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity on which the status has to be read.
* status: Returns the status set on the entity, based on the enabled status.
* mask: Filter the status condition to be read (can be NULL).
Return Value
e DDS_RETCODE_ OK: Success.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
This operation returns the status changes since they were last read.
Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity on which the status has to be read.
* status: Returns the status set on the entity, based on the enabled status.
* mask: Filter the status condition to be read (can be NULL).
Return Value
e DDS_RETCODE_ OK: Success.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

33

VortexDDS, Release 0.1.0

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation returns the status enabled on the entity

Return A dds_return_t indicating success or failure.

Parameters
* entity: Entity on which the statuses are read.
* status: Returns the current set of triggered statuses.

Return Value
e DDS_RETCODE_ OK: Success.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation enables the status(es) based on the mask set

Return A dds_return_t indicating success or failure.

Parameters
* entity: Entity to get the status.
* status: Status set on the entity.

Return Value
e DDS_RETCODE_OK: Success.
* DDS_RETCODE_BAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation allows access to the existing set of QoS policies for the entity.

Return A dds_return_t indicating success or failure.

Parameters
* entity: Entity to enable the status.
* mask: Status value that indicates the status to be enabled.

Return Value
e DDS_RETCODE_ OK: Success.
* DDS_RETCODE_BAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation replaces the existing set of Qos Policy settings for an entity. The parameter qos must contain
the struct with the QosPolicy settings which is checked for self-consistency.

Return A dds_return_t indicating success or failure.
Parameters

* entity: Entity on which to get qos.

34

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* gos: Pointer to the qos structure that returns the set policies.
Return Value

* DDS_RETCODE_OK: The existing set of QoS policy values applied to the entity has successfully
been copied into the specified qos parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BRAD_PARAMETER: The qos parameter is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

The set of QosPolicy settings specified by the qos parameter are applied on top of the existing QoS, re-
placing the values of any policies previously set (provided, the operation returned DDS_RETCODE_OK).

Not all policies are changeable when the entity is enabled.
This operation allows access to the existing listeners attached to the entity.
Note Currently only Latency Budget and Ownership Strength are changeable QoS that can be set.
Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity from which to get qos.
* gos: Pointer to the qos structure that provides the policies.
Return Value
* DDS_RETCODE_OK: The new QoS policies are set.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The qos parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_IMMUTABLE_POLICY: The entity is enabled and one or more of the policies
of the QoS are immutable.

* DDS_RETCODE_INCONSISTENT_POLICY: A few policies within the QoS are not consistent
with each other.

This operation attaches a dds_listener_t to the dds_entity_t. Only one Listener can be attached to each
Entity. If a Listener was already attached, this operation will replace it with the new one. In other words,
all related callbacks are replaced (possibly with NULL).

Return A dds_return_t indicating success or failure.
Parameters

* entity: Entity on which to get the listeners.

e listener: Pointer to the listener structure that returns the set of listener callbacks.
Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

* DDS_RETCODE_FERROR: An internal error has occurred.

35

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: The listener parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When listener parameter is NULL, all listener callbacks that were possibly set on the Entity will be re-
moved.

For each communication status, the StatusChangedFlag flag is initially set to FALSE. It becomes TRUE
whenever that plain communication status changes. For each plain communication status activated in the
mask, the associated Listener callback is invoked and the communication status is reset to FALSE, as the
listener implicitly accesses the status which is passed as a parameter to that operation. The status is reset
prior to calling the listener, so if the application calls the get_<status_name> from inside the listener it will
see the status already reset.

Note Not all listener callbacks are related to all entities.

In case a related callback within the Listener is not set, the Listener of the Parent entity is called recursively,
until a Listener with the appropriate callback set has been found and called. This allows the application to
set (for instance) a default behaviour in the Listener of the containing Publisher and a DataWriter specific
behaviour when needed. In case the callback is not set in the Publishers’ Listener either, the communication
status will be propagated to the Listener of the DomainParticipant of the containing DomainParticipant. In
case the callback is not set in the DomainParticipants’ Listener either, the Communication Status flag will
be set, resulting in a possible WaitSet trigger.

This operation returns the parent to which the given entity belongs. For instance, it will return the Partici-
pant that was used when creating a Publisher (when that Publisher was provided here).

Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity on which to get the listeners.

* listener: Pointer to the listener structure that contains the set of listener callbacks (maybe
NULL).

Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When a reader or a writer are created with a partition, then a subscriber or publisher respectively are created
implicitly. These implicit subscribers or publishers will be deleted automatically when the reader or writer
is deleted. However, when this function returns such an implicit entity, it is from there on out considered
‘explicit’. This means that it isn’t deleted automatically anymore. The application should explicitly call
dds_delete on those entities now (or delete the parent participant which will delete all entities within its
hierarchy).

This operation returns the participant to which the given entity belongs. For instance, it will return the Par-
ticipant that was used when creating a Publisher that was used to create a DataWriter (when that DataWriter
was provided here).

Return A valid entity handle or an error code.

Parameters

36

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* entity: Entity from which to get its parent.
Return Value
* >0: A valid entity handle.
* DDS_ENTITY_NIL: Called with a participant.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
TODO: Link to generic dds entity relations documentation.

This operation returns the children that the entity contains. For instance, it will return all the Topics,
Publishers and Subscribers of the Participant that was used to create those entities (when that Participant
is provided here).

Return A valid entity or an error code.
Parameters
* entity: Entity from which to get its participant.
Return Value
* >0: A valid participant handle.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This functions takes a pre-allocated list to put the children in and will return the number of found children.
It is possible that the given size of the list is not the same as the number of found children. If less children
are found, then the last few entries in the list are untouched. When more children are found, then only
‘size’ number of entries are inserted into the list, but still complete count of the found children is returned.
Which children are returned in the latter case is undefined.

When supplying NULL as list and O as size, you can use this to acquire the number of children without
having to pre-allocate a list.

When a reader or a writer are created with a partition, then a subscriber or publisher respectively are created
implicitly. These implicit subscribers or publishers will be deleted automatically when the reader or writer
is deleted. However, when this function returns such an implicit entity, it is from there on out considered
‘explicit’. This means that it isn’t deleted automatically anymore. The application should explicitly call
dds_delete on those entities now (or delete the parent participant which will delete all entities within its
hierarchy).

When creating a participant entity, it is attached to a certain domain. All the children (like Publishers) and
childrens’ children (like DataReaders), etc are also attached to that domain.

Return Number of children or an error code.

Parameters
* entity: Entity from which to get its children.
* children: Pre-allocated array to contain the found children.
* size: Size of the pre-allocated children’s list.

Return Value

37

VortexDDS, Release 0.1.0

* >=0: Number of childer found children (can be larger than ‘size’).
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The children parameter is NULL, while a size is provided.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This function will return the original domain ID when called on any of the entities within that hierarchy.

This operation returns a topic (handle) when the function call is done with reader, writer, read condition
or query condition. For instance, it will return the topic when it is used for creating the reader or writer.
For the conditions, it returns the topic that is used for creating the reader which was used to create the
condition.

Return A dds_return_t indicating success or failure.
Return instance handle or DDS_HANDLE_NIL if instance could not be found from key.
Return A dds_return_t indicating success or failure.
Return A dds_return_t indicating success or failure.
Parameters
* entity: Entity from which to get its children.
* id: Pointer to put the domain ID in.
Return Value
e DDS_RETCODE_ OK: Domain ID was returned.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The id parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Parameters
* entity: Reader or Writer entity.
* data: Sample with a key fields set.
Parameters
* entity: Reader or writer entity.
* inst: Instance handle.

* data: pointer to an instance, to which the key ID corresponding to the instance handle will be
returned, the sample in the instance should be ignored.

Return Value
* DDS_RETCODE_OK: The operation was successful.

* DDS_RETCODE_BAD_PARAMETER: One of the parameters was invalid or the topic does not
exist.

e DDS_RETCODE_ERROR: An internal error has occurred.
Parameters

* entity: Entity for which to check for triggered status.

38

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation will delete the given entity. It will also automatically delete all its children, childrens’
children, etc entities.

Return A dds_return_t indicating success or failure.
Parameters
* entity: The entity.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
TODO: Link to generic dds entity relations documentation.

Description : Read the status(es) set for the entity based on the enabled status and mask set. This operation
does not clear the read status(es).

Return O - Success (DDS_RETCODE_OK).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its parent.
Return Value
* DDS_RETCODE_ERROR: The entity and its children (recursive are deleted).
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Arguments :
1. e Entity on which the status has to be read
2. status Returns the status set on the entity, based on the enabled status
3. mask Filter the status condition to be read (can be NULL)
4. Returns 0 on success, or a non-zero error value if the mask does not correspond to the entity

Description : Read the status(es) set for the entity based on the enabled status and mask set. This operation
clears the status set after reading.

Arguments :
1. e Entity on which the status has to be read

2. status Returns the status set on the entity, based on the enabled status

39

VortexDDS, Release 0.1.0

3. mask Filter the status condition to be read (can be NULL)

4. Returns 0 on success, or a non-zero error value if the mask does not correspond to the entity
Description : Returns the status changes since they were last read.
Arguments :

1. e Entity on which the statuses are read

2. Returns the curent set of triggered statuses.

Description : This operation returns the status enabled on the entity
Arguments :

1. e Entity to get the status

2. Returns the status that are enabled for the entity
Description : This operation enables the status(es) based on the mask set
Arguments :

1. e Entity to enable the status

2. mask Status value that indicates the status to be enabled

3. Returns 0 on success, or a non-zero error value indicating failure if the mask does not correspond to
the entity.

This operation allows access to the existing set of QoS policies for the entity.
TODO: Link to generic QoS information documentation.

This operation replaces the existing set of Qos Policy settings for an entity. The parameter qos must contain
the struct with the QosPolicy settings which is checked for self-consistency.

Return 0 - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* e: Entity on which to get qos

* gos: Pointer to the qos structure that returns the set policies
Return Value

* DDS_RETCODE_OK: The existing set of QoS policy values applied to the entity has successfully
been copied into the specified qos parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The qos parameter is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

The set of QosPolicy settings specified by the qos parameter are applied on top of the existing QoS, re-
placing the values of any policies previously set (provided, the operation returned DDS_RETCODE_OK).

Not all policies are changeable when the entity is enabled.
TODO: Link to generic QoS information documentation.

This operation allows access to the existing listeners attached to the entity.

40

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Note Currently only Latency Budget and Ownership Strength are changeable QoS that can be set.
Return 0 - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* e: Entity from which to get qos
* gos: Pointer to the qos structure that provides the policies
Return Value
* DDS_RETCODE_OK: The new QoS policies are set.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The qos parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_IMMUTABLE_POLICY: The entity is enabled and one or more of the policies
of the QoS are immutable.

* DDS_RETCODE_INCONSISTENT_POLICY: A few policies within the QoS are not consistent
with each other.

TODO: Link to (generic) Listener and status information.

This operation attaches a dds_listener_t to the dds_entity_t. Only one Listener can be attached to each
Entity. If a Listener was already attached, this operation will replace it with the new one. In other words,
all related callbacks are replaced (possibly with NULL).

Return 0 - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* e: Entity on which to get the listeners
* listener: Pointer to the listener structure that returns the set of listener callbacks.
Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

* DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The listener parameter is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When listener parameter is NULL, all listener callbacks that were possibly set on the Entity will be re-
moved.

TODO: Link to (generic) Listener and status information.
Note Not all listener callbacks are related to all entities.

For each communication status, the StatusChangedFlag flag is initially set to FALSE. It becomes TRUE
whenever that plain communication status changes. For each plain communication status activated in the
mask, the associated Listener callback is invoked and the communication status is reset to FALSE, as the

41

VortexDDS, Release 0.1.0

listener implicitly accesses the status which is passed as a parameter to that operation. The status is reset
prior to calling the listener, so if the application calls the get_<status_name> from inside the listener it will
see the status already reset.

In case arelated callback within the Listener is not set, the Listener of the Parent entity is called recursively,
until a Listener with the appropriate callback set has been found and called. This allows the application to
set (for instance) a default behaviour in the Listener of the containing Publisher and a DataWriter specific
behaviour when needed. In case the callback is not set in the Publishers’ Listener either, the communication
status will be propagated to the Listener of the DomainParticipant of the containing DomainParticipant. In
case the callback is not set in the DomainParticipants’ Listener either, the Communication Status flag will
be set, resulting in a possible WaitSet trigger.

This operation returns the parent to which the given entity belongs. For instance, it will return the Partici-
pant that was used when creating a Publisher (when that Publisher was provided here).

Return O - Success (DDS_RETCODE_OK).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters

* e: Entity on which to get the listeners

* listener: Pointer to the listener structure that contains the set of listener callbacks (maybe
NULL).

Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

TODO: Link to generic dds entity relations documentation.

This operation returns the participant to which the given entity belongs. For instance, it will return the Par-
ticipant that was used when creating a Publisher that was used to create a DataWriter (when that DataWriter
was provided here).

Return >0 - Success (valid entity handle).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its parent.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
TODO: Link to generic dds entity relations documentation.

This operation returns the children that the entity contains. For instance, it will return all the Topics,
Publishers and Subscribers of the Participant that was used to create those entities (when that Participant
is provided here).

Return >0 - Success (valid entity handle).

42

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its participant.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This functions takes a pre-allocated list to put the children in and will return the number of found children.
It is possible that the given size of the list is not the same as the number of found children. If less children
are found, then the last few entries in the list are untouched. When more children are found, then only
‘size’ number of entries are inserted into the list, but still complete count of the found children is returned.
Which children are returned in the latter case is undefined.

When supplying NULL as list and O as size, you can use this to acquire the number of children without
having to pre-allocate a list.

TODO: Link to generic dds entity relations documentation.

When creating a participant entity, it is attached to a certain domain. All the children (like Publishers) and
childrens’ children (like DataReaders), etc are also attached to that domain.

Return >=0 - Success (number of found children, can be larger than ‘size’).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its children.
* children: Pre-allocated array to contain the found children.
* size: Size of the pre-allocated children’s list.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The children parameter is NULL, while a size is provided.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
This function will return the original domain ID when called on any of the entities within that hierarchy.
Description : Checks whether the entity has one of its enabled statuses triggered.
Return O - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its children.
* id: Pointer to put the domain ID in.
Return Value
e DDS_RETCODE_OK: Domain ID was returned.

e DDS_RETCODE_ERROR: An internal error has occurred.

43

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: The id parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Arguments :
1. e Entity for which to check for triggered status

_Pre_satisfies_(((writer & (0x7F000000))==DDS_KIND WRITER))
Get entity publisher.

This operation returns the publisher to which the given entity belongs. For instance, it will return the
Publisher that was used when creating a DataWriter (when that DataWriter was provided here).
Return A valid entity or an error code.
Parameters
* entity: Entity from which to get its publisher.
Return Value
* >0: A valid publisher handle.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_(((entity & (0x7F000000))==DDS_KIND_READER) | | ((entity & (0x7F000000))==DD
Get entity subscriber.

This operation returns the subscriber to which the given entity belongs. For instance, it will return the
Subscriber that was used when creating a DataReader (when that DataReader was provided here).
Return A valid subscriber handle or an error code.
Parameters
* entity: Entity from which to get its subscriber.
Return Value
e >0: A valid subscriber handle.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_(((condition & (0x7F000000))==DDS_KIND_ COND_READ) | | ((condition & (0x7F000
Get entity datareader.

Get the mask of a condition.

This operation returns the datareader to which the given entity belongs. For instance, it will return the
DataReader that was used when creating a ReadCondition (when that ReadCondition was provided here).

This operation returns the mask that was used to create the given condition.
Return A valid reader handle or an error code.

Parameters

44 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* entity: Entity from which to get its datareader.
Return Value
* >0: A valid reader handle.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
This operation returns the mask that was used to create the given condition.
Return A dds_return_t indicating success or failure.
Parameters
* condition: Read or Query condition that has a mask.
Return Value
* DDS_RETCODE_OK: Success (given mask is set).
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The mask arg is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Return O - Success (given mask is set).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* condition: Read or Query condition that has a mask.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The mask arg is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_EXPORT _Must_inspect_result_ dds_entity_t dds_create_participant (_In_ const dds_do:
Creates a new instance of a DDS participant in a domain.

If domain is set (not DDS_DOMAIN_DEFAULT) then it must match if the domain has also been config-
ured or an error status will be returned. Currently only a single domain can be configured by providing
configuration file. If no configuration file exists, the default domain is configured as 0.

Return A valid participant handle or an error code.

Parameters

* domain: The domain in which to create the participant (can be DDS_DOMAIN_DEFAULT).
Valid values for domain id are between 0 and 230. DDS_DOMAIN_DEFAULT is for using the
domain in the configuration.

* gos: The QoS to set on the new participant (can be NULL).

* listener: Any listener functions associated with the new participant (can be NULL).

45

VortexDDS, Release 0.1.0

Return Value
* >0: A valid participant handle.
e DDS_RETCODE_ERROR: An internal error has occurred.

DDS_EXPORT _Check_return_ dds_return_t dds_lookup_participant (_In_ dds_domainid_t doma
Get participants of a domain.

This operation acquires the participants created on a domain and returns the number of found participants.
This function takes a domain id with the size of pre-allocated participant’s list in and will return the number
of found participants. It is possible that the given size of the list is not the same as the number of found
participants. If less participants are found, then the last few entries in an array stay untouched. If more
participants are found and the array is too small, then the participants returned are undefined.
Return Number of participants found or and error code.
Parameters

¢ domain_id: The domain id.

* participants: The participant for domain.

» size: Size of the pre-allocated participant’s list.
Return Value

* >0: Number of participants found.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The participant parameter is NULL, while a size is pro-
vided.

_Pre_satisfies_ ((participant & (0x7F000000)) = =DDS_KIND_PARTICIPANT)
Creates a new topic.

Create a waitset and allocate the resources required.
Creates a new instance of a DDS publisher.

Creates a new instance of a DDS subscriber.

Finds a named topic.

The type name for the topic is taken from the generated descriptor. Topic matching is done on a combina-
tion of topic name and type name.

The returned topic should be released with dds_delete.
Return A valid topic handle or an error code.
Parameters
* participant: Participant on which to create the topic.
* descriptor: An IDL generated topic descriptor.
* name: Name of the topic.
* gos: QoS to set on the new topic (can be NULL).
* listener: Any listener functions associated with the new topic (can be NULL).
Return Value

* >=0: A valid topic handle.

46 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: Either participant, descriptor, name or qos is invalid.

A WaitSet object allows an application to wait until one or more of the conditions of the attached entities
evaluates to TRUE or until the timeout expires.

Return A valid topic handle or an error code.
Return A valid subscriber handle or an error code.
Return A valid publisher handle or an error code.
Parameters

* participant: The participant on which to find the topic.

* name: The name of the topic to find.
Return Value

* >0: A valid topic handle.

* DDS_RETCODE_BAD_PARAMETER: Participant was invalid.
Parameters

* participant: The participant on which the subscriber is being created.

¢ gos: The QoS to set on the new subscriber (can be NULL).

* listener: Any listener functions associated with the new subscriber (can be NULL).
Return Value

* >0: A valid subscriber handle.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BRAD_PARAMETER: One of the parameters is invalid.
Parameters

* participant: The participant to create a publisher for.

* gos: The QoS to set on the new publisher (can be NULL).

* listener: Any listener functions associated with the new publisher (can be NULL).
Return Value

* >0: A valid publisher handle.

e DDS_RETCODE_ERROR: An internal error has occurred.

Description : Finds a named topic. Returns NULL if does not exist. The returned topic should be released
with dds_delete.

Return A valid waitset handle or an error code.
Parameters
* participant: Domain participant which the WaitSet contains.
Return Value
* >=0: A valid waitset handle.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

47

VortexDDS, Release 0.1.0

Arguments :
1. pp The participant on which to find the topic
2. name The name of the topic to find
3. Returns a topic, NULL if could not be found or error

A WaitSet object allows an application to wait until one or more of the conditions of the attached entities
evaluates to TRUE or until the timeout expires.

Return >0 - Success (valid handle of a subscriber entity).
Return <O - Failure (use dds_err_nr() to get error value).
Return >0 - Success (valid handle of a publisher entity).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* participant: The participant on which the subscriber is being created
e gos: The QoS to set on the new subscriber (can be NULL)
* listener: Any listener functions associated with the new subscriber (can be NULL)
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.
DDS_RETCODE_BAD_PARAMETER One of the parameters is invalid

Parameters
* participant: The participant to create a publisher for
* gos: The QoS to set on the new publisher (can be NULL)

* listener: Any listener functions associated with the new publisher (can be NULL)

Return >0 - Success (valid waitset).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* participant: Domain participant which the WaitSet contains.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_((topic & (0x7F000000)) = =DDS_KIND_TOPIC)

Returns the name of a given topic.

Gets the filter for a topic.

Sets a filter on a topic.

Returns the type name of a given topic.

Description : Returns a topic type name.

Return A dds_return_t indicating success or failure.

Return A dds_return_t indicating success or failure.

48

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return DDS_RETCODE_OK Success.
Return The topic filter.
Parameters
* topic: The topic.
* name: Buffer to write the topic name to.
* size: Number of bytes available in the buffer.
Return Value
e DDS_RETCODE_ OK: Success.
Parameters
* topic: The topic.
* name: Buffer to write the topic type name to.
* size: Number of bytes available in the buffer.
Parameters
* topic: The topic on which the content filter is set.
e filter: The filter function used to filter topic samples.
* topic: The topic from which to get the filter.
Arguments :
1. topic The topic
2. Returns The topic type name or NULL to indicate an error
_Out_writes_z_ (size)

_Pre_satisfies_ ((publisher & (0x7F000000)) = =DDS_KIND_PUBLISHER)
Suspends the publications of the Publisher.

Resumes the publications of the Publisher.

This operation is a hint to the Service so it can optimize its performance by e.g., collecting modifications
to DDS writers and then batching them. The Service is not required to use the hint.

Every invocation of this operation must be matched by a corresponding call to This operation is a hint to
the Service to indicate that the application has completed changes initiated by a previous dds_suspend().
The Service is not required to use the hint.

See dds_resume indicating that the set of modifications has completed.
Return A dds_return_t indicating success or failure.
Parameters
* publisher: The publisher for which all publications will be suspended.
Return Value
* DDS_RETCODE_OK: Publications suspended successfully.
* DDS_RETCODE_BAD_PARAMETER: The pub parameter is not a valid publisher.

* DDS_RETCODE_UNSUPPORTED: Operation is not supported.

49

VortexDDS, Release 0.1.0

The call to resume_publications must match a previous call to This operation is a hint to the Service to
indicate that the application has completed changes initiated by a previous The call to resume_publications
must match a previous call to

See suspend_publications.
Return A dds_return_t indicating success or failure.
See suspend. The Service is not required to use the hint.
See suspend_publications.
Return >0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
See dds_suspend.
Parameters
* publisher: The publisher for which all publications will be resumed.
Return Value
* DDS_RETCODE_OK: Publications resumed successfully.
* DDS_RETCODE_BAD_PARAMETER: The pub parameter is not a valid publisher.
* DDS_RETCODE_PRECONDITION_NOT_MET: No previous matching dds_suspend().
* DDS_RETCODE_UNSUPPORTED: Operation is not supported.
Parameters
* publisher: The publisher for which all publications will be resumed
Return Value
* DDS_RETCODE_OK: Publications resumed successfully.
* DDS_RETCODE_BAD_PARAMETER: The pub parameter is not a valid publisher.
* DDS_RETCODE_PRECONDITION_NOT_MET: No previous matching
Return Value
* DDS_RETCODE_UNSUPPORTED: Operation is not supported.

_Pre_satisfies_(((publisher_or_writer & (0x7F000000))==DDS_KIND_WRITER) | | ((publisher_or
Waits at most for the duration timeout for acks for data in the publisher or writer.

This operation blocks the calling thread until either all data written by the publisher or writer is acknowl-
edged by all matched reliable reader entities, or else the duration specified by the timeout parameter
elapses, whichever happens first.
Return A dds_return_t indicating success or failure.
Parameters

* publisher_or_writer: Publisher or writer whose acknowledgments must be waited for

* timeout: How long to wait for acknowledgments before time out
Return Value

* DDS_RETCODE_OK: All acknowledgments successfully received with the timeout.

* DDS_RETCODE_BAD_PARAMETER: The publisher_or_writer is not a valid publisher or writer.

50 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_TIMEOUT: Timeout expired before all acknowledgments from reliable reader
entities were received.

* DDS_RETCODE_UNSUPPORTED: Operation is not supported.

_Pre_satisfies_(((participant_or_ subscriber & (0x7F000000))==DDS_KIND_SUBSCRIBER) | | ((pa
Creates a new instance of a DDS reader.

This implicit subscriber will be deleted automatically when the created reader is deleted.

Return A valid reader handle or an error code.
Parameters

* participant_or_subscriber: The participant or subscriber on which the reader is being
created.

* topic: The topic to read.

¢ gos: The QoS to set on the new reader (can be NULL).

* listener: Any listener functions associated with the new reader (can be NULL).
Return Value

* >0: A valid reader handle.

e DDS_RETCODE_ERROR: An internal error occurred.

_Pre_satisfies_((reader & (0x7F000000)) = =DDS_KIND_ READER)
Wait until reader receives all historic data.

Read and copy the status set for the loaned sample.
Read and copy the status set for the entity.

Read, copy and remove the status set for the entity.
Creates a queryondition associated to the given reader.
Creates a readcondition associated to the given reader.

The operation blocks the calling thread until either all “historical” data is received, or else the duration
specified by the max_wait parameter elapses, whichever happens first. A return value of 0 indicates that
all the “historical” data was received; a return value of TIMEOUT indicates that max_wait elapsed before
all the data was received.

The readcondition allows specifying which samples are of interest in a data reader’s history, by
means of a mask. The mask is or’d with the flags that are dds_sample_state_t, dds_view_state_t and
dds_instance_state_t.

Return a status, 0 on success, TIMEOUT on timeout or a negative value to indicate error.
Parameters

* reader: The reader on which to wait for historical data.

* max_wait: How long to wait for historical data before time out.
Based on the mask value set, the readcondition gets triggered when data is available on the reader.

Waitsets allow waiting for an event on some of any set of entities. This means that the readcondition can
be used to wake up a waitset when data is in the reader history with states that matches the given mask.

The queryondition allows specifying which samples are of interest in a data reader’s history, by means
of a mask and a filter. The mask is or’d with the flags that are dds_sample_state_t, dds_view_state_t and
dds_instance_state_t.

51

VortexDDS, Release 0.1.0

Note The parent reader and every of its associated conditions (whether they are readconditions or
queryconditions) share the same resources. This means that one of these entities reads or takes data,
the states of the data will change for other entities automatically. For instance, if one reads a sample,
then the sample state will become ‘read’ for all associated reader/conditions. Or if one takes a sample,
then it’s not available to any other associated reader/condition.

Return A valid condition handle or an error code.
Parameters
* reader: Reader to associate the condition to.
* mask: Interest (dds_sample_state_tldds_view_state_tldds_instance_state_t).
Return Value
* >0: A valid condition handle
e DDS_RETCODE_FERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Based on the mask value set and data that matches the filter, the querycondition gets triggered when data
is available on the reader.

Waitsets allow waiting for an event on some of any set of entities. This means that the querycondition can
be used to wake up a waitset when data is in the reader history with states that matches the given mask and
filter.

This operation copies the next, non-previously accessed data value and corresponding sample info and
removes from the data reader. As an entity, only reader is accepted.

Note The parent reader and every of its associated conditions (whether they are readconditions or
queryconditions) share the same resources. This means that one of these entities reads or takes data,
the states of the data will change for other entities automatically. For instance, if one reads a sample,
then the sample state will become ‘read’ for all associated reader/conditions. Or if one takes a sample,
then it’s not available to any other associated reader/condition.

Return A valid condition handle or an error code
Parameters
* reader: Reader to associate the condition to.
* mask: Interest (dds_sample_state_tldds_view_state_tldds_instance_state_t).
* filter: Callback that the application can use to filter specific samples.
Return Value
e >=0: A valid condition handle.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation copies the next, non-previously accessed data value and corresponding sample info and
removes from the data reader. As an entity, only reader is accepted.

Return A dds_return_t indicating success or failure.

Parameters

52

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* reader: The reader entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: The pointer to dds_sample_info_t returned for a data value.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_take_next_wl function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory.

This operation copies the next, non-previously accessed data value and corresponding sample info. As an
entity, only reader is accepted.

Return A dds_return_t indicating success or failure.
Parameters
* reader: The reader entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: The pointer to dds_sample_info_t returned for a data value.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation copies the next, non-previously accessed data value and corresponding loaned sample info.
As an entity, only reader is accepted.

Return A dds_return_t indicating success or failure.
Parameters
* reader: The reader entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: The pointer to dds_sample_info_t returned for a data value.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_read_next_wl function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory.

53

VortexDDS, Release 0.1.0

The readcondition allows specifying which samples are of interest in a data reader’s history, by
means of a mask. The mask is or’d with the flags that are dds_sample_state_t, dds_view_state_t and
dds_instance_state_t.

Return A dds_return_t indicating success or failure.
Parameters
* reader: The reader entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: The pointer to dds_sample_info_t returned for a data value.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BAD_PARAMETER: The entity parameter is not a valid parameter.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Based on the mask value set, the readcondition gets triggered when data is available on the reader.
Waitsets allow waiting for an event on some of any set of entities. This means that the readcondition can

be used to wake up a waitset when data is in the reader history with states that matches the given mask.

Note The parent reader and every of its associated conditions (whether they are readconditions or
queryconditions) share the same resources. This means that one of these entities reads or takes data,
the states of the data will change for other entities automatically. For instance, if one reads a sample,
then the sample state will become ‘read’ for all associated reader/conditions. Or if one takes a sample,
then it’s not available to any other associated reader/condition.

Return >0 - Success (valid condition).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader: Reader to associate the condition to.
* mask: Interest (dds_sample_state_tldds_view_state_tldds_instance_state_t).
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_(((participant_or_ publisher & (0x7F000000))==DDS_KIND_PUBLISHER) | | ((part
Creates a new instance of a DDS writer.

This implicit publisher will be deleted automatically when the created writer is deleted.

Return A valid writer handle or an error code.
Return >0 A valid writer handle.
Return DDS_RETCODE_ERROR An internal error occurred.

Parameters

54 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* participant_or_publisher: The participant or publisher on which the writer is being
created.

* topic: The topic to write.
e gos: The QoS to set on the new writer (can be NULL).
* listener: Any listener functions associated with the new writer (can be NULL).

_Pre_satisfies_((writer & (0x7F000000)) = =DDS_KIND_WRITER)
Registers an instance.

Write the value of a data instance along with the source timestamp passed.

Write a CDR serialized value of a data instance.

Write the value of a data instance.

This operation disposes an instance with a specific timestamp, identified by the instance handle.
This operation disposes an instance, identified by the instance handle.

This operation disposes an instance with a specific timestamp, identified by the data sample.
This operation disposes an instance, identified by the data sample.

This operation modifies and disposes a data instance with a specific timestamp.

This operation modifies and disposes a data instance.

Unregisters an instance.

This operation registers an instance with a key value to the data writer and returns an instance handle that
could be used for successive write & dispose operations. When the handle is not allocated, the function
will return and error and the handle will be un-touched.

This operation reverses the action of register instance, removes all information regarding the instance and
unregisters an instance with a key value from the data writer.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to which instance has be associated.
* handle: The instance handle.
* data: The instance with the key value.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

This operation unregisters the instance which is identified by the key fields of the given typed instance
handle.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to which instance is associated.
* data: The instance with the key value.

Return Value

55

VortexDDS, Release 0.1.0

* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

This operation reverses the action of register instance, removes all information regarding the instance and
unregisters an instance with a key value from the data writer. It also provides a value for the timestamp
explicitly.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to which instance is associated.
* handle: The instance handle.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

This operation unregisters an instance with a key value from the handle. Instance can be identified from
instance handle. If an unregistered key ID is passed as an instance data, an error is logged and not flagged
as return value.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to which instance is associated.
* data: The instance with the key value.
* timestamp: The timestamp used at registration.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return A dds_return_t indicating success or failure.
Parameters

* writer: The writer to which instance is associated.

* handle: The instance handle.

* timestamp: The timestamp used at registration.
Return Value

* DDS_RETCODE_OK: The operation was successful

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid

56

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the
writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time
attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

This operation performs the same functions as dds_writedispose except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to dispose the data instance from.
* data: The data to be written and disposed.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to dispose the data instance from.
* data: The data to be written and disposed.
* timestamp: The timestamp used as source timestamp.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

57

VortexDDS, Release 0.1.0

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the
writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time
attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

This operation performs the same functions as dds_dispose except that the application provides the value
for the source_timestamp that is made available to connected reader objects. This timestamp is important
for the interpretation of the destination_order QoS policy.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return A dds_return_t indicating success or failure.

Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
* timestamp: The timestamp used as source timestamp.

Return Value

58

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion

* DDS_RETCODE_ERROR: An internal error has occurred

* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgment by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

The given instance handle must correspond to the value that was returned by either the
dds_register_instance operation, dds_register_instance_ts or dds_instance_lookup. If there is no corre-
spondence, then the result of the operation is unspecified.

This operation performs the same functions as dds_dispose_ih except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to dispose the data instance from.
* handle: The handle to identify an instance.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer

With this API, the value of the source timestamp is automatically made available to the data reader by the
service.

Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer to dispose the data instance from.
* handle: The handle to identify an instance.
* timestamp: The timestamp used as source timestamp.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
* DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.

59

VortexDDS, Release 0.1.0

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer.

Description : Unregisters an instance with a key value from the data writer. Instance can be identified
either from data sample or from instance handle (at least one must be provided).

Return dds_return_t indicating success or failure.
Return A dds_return_t indicating success or failure.
Return A dds_return_t indicating success or failure.
Parameters
* writer: The writer entity.
e data: Value to be written.
Parameters
* writer: The writer entity.
e cdr: CDR serialized value to be written.
* size: Size (in bytes) of CDR encoded data to be written.
Parameters
* writer: The writer entity.
e data: Value to be written.
* timestamp: Source timestamp.
Arguments :
1. wr The writer to which instance is associated
2. data Instance with the key value (can be NULL if handle set)
3. handle Instance handle (can be DDS_HANDLE_NIL if data set)
4. Returns O on success, or non-zero value to indicate an error

Note : If an unregistered key ID is passed as instance data, an error is logged and not flagged as return
value

Description : Unregisters an instance with a key value from the data writer. Instance can be identified
either from data sample or from instance handle (at least one must be provided).

Arguments :
1. wr The writer to which instance is associated
2. data Instance with the key value (can be NULL if handle set)
3. handle Instance handle (can be DDS_HANDLE_NIL if data set)
4. timestamp used at registration.
5. Returns 0 on success, or non-zero value to indicate an error

Note : If an unregistered key ID is passed as instance data, an error is logged and not flagged as return
value

60 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the

writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time
attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

Description : This operation modifies and disposes a data instance with a specific timestamp.
Return O - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data to be written and disposed.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation performs the same functions as dds_writedispose except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return 0 - Success.
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data to be written and disposed.

* timestamp: The timestamp used as source timestamp.

61

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the
writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time
attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

Description : This operation disposes an instance with a specific timestamp, identified by the data sample.
Return O - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation performs the same functions as dds_dispose except that the application provides the value
for the source_timestamp that is made available to connected reader objects. This timestamp is important
for the interpretation of the destination_order QoS policy.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,

62

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return 0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
* timestamp: The timestamp used as source timestamp.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_FERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

The given instance handle must correspond to the value that was returned by either the
dds_register_instance operation, dds_register_instance_ts or dds_instance_lookup. If there is no corre-
spondence, then the result of the operation is unspecified.

Description : This operation disposes an instance with a specific timestamp, identified by the instance
handle.

Return O - Success.
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* handle: The handle to identify an instance.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer.

This operation performs the same functions as dds_dispose_ih except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

63

VortexDDS, Release 0.1.0

With this API, the value of the source timestamp is automatically made available to the data reader by the

service.
Return

Return

0 - Success.

<0 - Failure (use dds_err_nr() to get error value).

Parameters

writer: The writer to dispose the data instance from.
handle: The handle to identify an instance.

timestamp: The timestamp used as source timestamp.

Return Value

DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer.

Untyped API, which take serialized blobs now. Whether they remain exposed like this with X-types isn’t
entirely clear yet. TODO: make a decide about dds_takecdr

Return

- dds_return_t indicating success or failure

Parameters

writer: The writer entity

data: Value to be written

Return - A dds_return_t indicating success or failure
Return - A dds_return_t indicating success or failure
Parameters

writer: The writer entity
cdr: CDR serialized value to be written

size: Size (in bytes) of CDR encoded data to be written

Parameters

writer: The writer entity
data: Value to be written

timestamp: Source timestamp

_Pre_satisfies_ ((waitset & (0x7F000000)) = =DDS_KIND WAITSET)
Acquire previously attached entities.

This operation allows an application thread to wait for the a status change or other trigger on (one of) the
entities that are attached to the WaitSet.

Sets the trigger_value associated with a waitset.

64

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

This operation detaches an Entity to the WaitSet.
This operation attaches an Entity to the WaitSet.

This functions takes a pre-allocated list to put the entities in and will return the number of found entities. It
is possible that the given size of the list is not the same as the number of found entities. If less entities are
found, then the last few entries in the list are untouched. When more entities are found, then only ‘size’
number of entries are inserted into the list, but still the complete count of the found entities is returned.
Which entities are returned in the latter case is undefined.

This operation attaches an Entity to the WaitSet. The dds_waitset_wait() will block when none of the
attached entities are triggered. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

* ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return A dds_return_t with the number of children or an error code.
Parameters
* waitset: Waitset from which to get its attached entities.
* entities: Pre-allocated array to contain the found entities.
* size: Size of the pre-allocated entities’ list.
Return Value
* >=0: Number of children found (can be larger than ‘size’).
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The entities parameter is NULL, while a size is provided.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
Multiple entities can be attached to a single waitset. A particular entity can be attached to multiple waitsets.
However, a particular entity can not be attached to a particular waitset multiple times.

When the waitset is attached to itself and the trigger value is set to ‘true’, then the waitset will wake up
just like with an other status change of the attached entities.

Return A dds_return_t indicating success or failure.
Return A dds_return_t indicating success or failure.
Parameters
* waitset: The waitset to attach the given entity to.
* entity: The entity to attach.

* x: Blob that will be supplied when the waitset wait is triggerd by the given entity.

65

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_OK: Entity attached.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The entity was already attached.
Parameters
* waitset: The waitset to detach the given entity from.
* entity: The entity to detach.
Return Value
* DDS_RETCODE_OK: Entity attached.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The entity is not attached.

This can be used to forcefully wake up a waitset, for instance when the application wants to shut down.
So, when the trigger value is true, the waitset will wake up or not wait at all.

The trigger value will remain true until the application sets it false again deliberately.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “reltime-
out” has elapsed. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

» ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return A dds_return_t indicating success or failure.
Parameters
* waitset: The waitset to set the trigger value on.
* trigger: The trigger value to set.
Return Value
* DDS_RETCODE_OK: Entity attached.

e DDS_RETCODE_ERROR: An internal error has occurred.

66 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted

into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

The “dds_waitset_wait_until” operation is the same as the “dds_waitset_wait” except that it takes an ab-
solute timeout.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “abstime-
out” has been reached. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

* ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return A dds_return_t with the number of entities triggered or an error code
Parameters
* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.
* reltimeout: Relative timeout
Return Value
* >0: Number of entities triggered.
* 0: Time out (no entities were triggered).
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

67

VortexDDS, Release 0.1.0

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.

This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted
into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

The “dds_waitset_wait” operation is the same as the “dds_waitset_wait_until” except that it takes an rela-
tive timeout.

The “dds_waitset_wait” operation is the same as the “dds_wait” except that it takes an absolute timeout.

This operation attaches an Entity to the WaitSet. The dds_waitset_wait() will block when none of the
attached entities are triggered. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
¢ WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

* ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return A dds_return_t with the number of entities triggered or an error code.
Parameters
* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.
* abstimeout: Absolute timeout
Return Value
* >0: Number of entities triggered.
* 0: Time out (no entities were triggered).
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The given waitset is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.

68

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Multiple entities can be attached to a single waitset. A particular entity can be attached to multiple waitsets.
However, a particular entity can not be attached to a particular waitset multiple times.

When the waitset is attached to itself and the trigger value is set to ‘true’, then the waitset will wake up
just like with an other status change of the attached entities.

Return O - Success (entity attached).
Return <0 - Failure (use dds_err_nr() to get error value).
Return O - Success (entity attached).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* waitset: The waitset to attach the given entity to.
* entity: The entity to attach.
* x: Blob that will be supplied when the waitset wait is triggerd by the given entity.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The entity was already attached.
Parameters
* waitset: The waitset to detach the given entity from.
* entity: The entity to detach.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The entity is not attached.

This can be used to forcefully wake up a waitset, for instance when the application wants to shut down.
So, when the trigger value is true, the waitset will wake up or not wait at all.

The trigger value will remain true until the application sets it false again deliberately.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “reltime-
out” has elapsed. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

69

VortexDDS, Release 0.1.0

» ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return O - Success (entity attached).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* waitset: The waitset to set the trigger value on.
* trigger: The trigger value to set.
Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted

into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

The “dds_waitset_wait_until” operation is the same as the “dds_waitset_wait” except that it takes an ab-
solute timeout.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “abstime-
out” has been reached. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

* Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

* ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return >0 - Success (number of entities triggered).
Return O - Time out (no entities were triggered).

Return <O - Failure (use dds_err_nr() to get error value).

70

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.

* reltimeout: Relative timeout
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted

into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

The “dds_waitset_wait” operation is the same as the “dds_waitset_wait_until” except that it takes an rela-
tive timeout.

The “dds_waitset_wait” operation is the same as the “dds_wait” except that it takes an absolute timeout.

Return >0 - Success (number of entities triggered).
Return O - Time out (no entities were triggered).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.
* abstimeout: Absolute timeout
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

71

VortexDDS, Release 0.1.0

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.

_Out_writes_to_ (size)
_Out_writes_to_opt_ (nxs)

_Pre_satisfies_ (((reader_or_condition & (0x7F000000))==DDS_KIND_ READER) | | ((reader_or_ co
Access and read the collection of data values (of same type) and sample info from the data reader, read-
condition or querycondition.

Return loaned samples to data-reader or condition associated with a data-reader.

Access loaned samples of data reader, readcondition or querycondition based on mask and scoped by the
given intance handle.

Take the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition based on mask and scoped by the given instance handle.

Access loaned samples of data reader, readcondition or querycondition, scoped by the given instance
handle.

Access the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition but scoped by the given instance handle.

Access loaned samples of data reader, readcondition or querycondition based on mask.

Take the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition based on mask.

Access loaned samples of data reader, readcondition or querycondition.

Access the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition.

Access and read loaned samples of data reader, readcondition or querycondition based on mask, scoped by
the provided instance handle.

Read the collection of data values and sample info from the data reader, readcondition or querycondition
based on mask and scoped by the provided instance handle.

Access and read loaned samples of data reader, readcondition or querycondition, scoped by the provided
instance handle.

Access and read the collection of data values (of same type) and sample info from the data reader, read-
condition or querycondition, coped by the provided instance handle.

Access and read loaned samples of data reader, readcondition or querycondition based on mask.

Read the collection of data values and sample info from the data reader, readcondition or querycondition
based on mask.

Access and read loaned samples of data reader, readcondition or querycondition.

Return value provides information about number of samples read, which will be <= maxs. Based on the
count, the buffer will contain data to be read only when valid_data bit in sample info structure is set. The
buffer required for data values, could be allocated explicitly or can use the memory from data reader to
prevent copy. In the latter case, buffer and sample_info should be returned back, once it is no longer
using the Data. Data values once read will remain in the buffer with the sample_state set to READ and
view_state set to NOT_NEW.

After dds_read_wl function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory.

Return A dds_return_t with the number of samples read or an error code.

72 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* bufsz: The size of buffer provided.
* maxs: Maximum number of samples to read.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return A dds_return_t with the number of samples read or an error code
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
Return Value
e >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* bufsz: The size of buffer provided.
* maxs: Maximum number of samples to read.
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value

* >=0: Number of samples read.

73

VortexDDS, Release 0.1.0

DDS_RETCODE_ERROR: An internal error has occurred.
DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_read_mask_w1 function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation implements the same functionality as dds_read, except that only data scoped to the provided
instance handle is read.

Return

A dds_return_t with the number of samples read or an error code.

Parameters

reader_or_condition: Reader, readcondition or querycondition entity.

buf: An array of pointers to samples into which data is read (pointers can be NULL).
si: Pointer to an array of dds_sample_info_t returned for each data value.

maxs: Maximum number of samples to read.

mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.

Return Value

>=0: Number of samples read.

DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_read_wl, except that only data scoped to the
provided instance handle is read.

Return

A dds_return_t with the number of samples read or an error code.

Parameters

reader_or_condition: Reader, readcondition or querycondition entity.

buf: An array of pointers to samples into which data is read (pointers can be NULL).
s1i: Pointer to an array of dds_sample_info_t returned for each data value.

bufsz: The size of buffer provided.

maxs: Maximum number of samples to read.

handle: Instance handle related to the samples to read.

Return Value

>=0: Number of samples read.

DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

74

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask, except that only data scoped to the
provided instance handle is read.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask_wl, except that only data scoped to
the provided instance handle is read.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* bufsz: The size of buffer provided.
* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
» mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

75

VortexDDS, Release 0.1.0

Data value once read is removed from the Data Reader cannot to ‘read’ or ‘taken’ again. Return value
provides information about number of samples read, which will be <= maxs. Based on the count, the
buffer will contain data to be read only when valid_data bit in sample info structure is set. The buffer
required for data values, could be allocated explicitly or can use the memory from data reader to prevent
copy. In the latter case, buffer and sample_info should be returned back, once it is no longer using the
Data.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

After dds_take_wl function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* bufsz: The size of buffer provided.
* maxs: Maximum number of samples to read.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When using a readcondition or querycondition, their masks are or’d with the given mask.

76 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_take_mask_wl function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation mplements the same functionality as dds_take, except that only data scoped to the provided
instance handle is taken.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_take_wl, except that only data scoped to the
provided instance handle is read.

Return A dds_return_t with the number of samples read or an error code.

Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.

* bufsz: The size of buffer provided.

77

VortexDDS, Release 0.1.0

* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
Return Value
* >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_take_mask, except that only data scoped to the
provided instance handle is read.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
Return Value
e >=0: Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_take_mask_wl, except that only data scoped to
the provided instance handle is read.

Return A dds_return_t with the number of samples read or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* bufsz: The size of buffer provided.
* maxs: Maximum number of samples to read.

* handle: Instance handle related to the samples to read.

78

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value

e >=0: Number of samples read.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

Used to release sample buffers returned by a read/take operation. When the application provides an empty
buffer, memory is allocated and managed by DDS. By calling dds_return_loan, the memory is released so
that the buffer can be reused during a successive read/take operation. When a condition is provided, the
reader to which the condition belongs is looked up.

Return A dds_return_t with the number of samples or an error code.
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity.
* buf: An array of pointers to samples into which data is read (pointers can be NULL).
* si: Pointer to an array of dds_sample_info_t returned for each data value.
* maxs: Maximum number of samples to read.
* handle: Instance handle related to the samples to read.
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e >=: 0 Number of samples read.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

After dds_read_wl function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory

Return A dds_return_t indicating success or failure
Parameters
* rd_or_cnd: Reader or condition that belongs to a reader.
* buf: An array of (pointers to) samples.
* bufsz: The number of (pointers to) samples stored in buf.
When using a readcondition or querycondition, their masks are or’d with the given mask.

Return >=0 - Success (number of samples read).

79

VortexDDS, Release 0.1.0

Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_read_mask_w1 function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation implements the same functionality as dds_read, except that only data scoped to the provided
instance handle is read.

Return >=0 - Success (number of samples read).

Return <O - Failure (use dds_err_nr() to get error value).

Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value

* maxs: Maximum number of samples to read

80 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_read_wl, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

81

VortexDDS, Release 0.1.0

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask_wl, except that only data scoped to
the provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

Description : Access the collection of data values (of same type) and sample info from the data reader
based on the criteria specified in the read condition. Read condition must be attached to the data reader
before associating with data read. Return value provides information about number of samples read, which
will be <= maxs. Based on the count, the buffer will contain data to be read only when valid_data bit in
sample info structure is set. The buffer required for data values, could be allocated explicitly or can
use the memory from data reader to prevent copy. In the latter case, buffer and sample_info should be
returned back, once it is no longer using the Data. Data values once read will remain in the buffer with the
sample_state set to READ and view_state set to NOT_NEW.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read

* handle: Instance handle related to the samples to read

82

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

Arguments :
1. rd Reader entity
. buf an array of pointers to samples into which data is read (pointers can be NULL)
. maxs maximum number of samples to read

2
3
4. si pointer to an array of dds_sample_info_t returned for each data value
5. cond read condition to filter the data samples based on the content

6

. Returns the number of samples read, 0 indicates no data to read. Data value once read is removed from
the Data Reader cannot to ‘read’ or ‘taken’ again. Return value provides information about number
of samples read, which will be <= maxs. Based on the count, the buffer will contain data to be read
only when valid_data bit in sample info structure is set. The buffer required for data values, could be
allocated explicitly or can use the memory from data reader to prevent copy. In the latter case, buffer
and sample_info should be returned back, once it is no longer using the Data.

After dds_take_w1 function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return >=0 - Success (number of samples read).

Return <0 - Failure (use dds_err_nr() to get error value).

83

VortexDDS, Release 0.1.0

Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_take_mask_wl1 function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation mplements the same functionality as dds_take, except that only data scoped to the provided
instance handle is taken.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_take_wl, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided

* maxs: Maximum number of samples to read

84

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

handle: Instance handle related to the samples to read

Return Value

DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_take_mask, except that only data scoped to the
provided instance handle is read.

Return

Return

>=0 - Success (number of samples read).

<0 - Failure (use dds_err_nr() to get error value).

Parameters

reader_or_condition: Reader, readcondition or querycondition entity

buf: An array of pointers to samples into which data is read (pointers can be NULL)
s1i: Pointer to an array of dds_sample_info_t returned for each data value

maxs: Maximum number of samples to read

handle: Instance handle related to the samples to read

Return Value

DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_take_mask_wl, except that only data scoped to
the provided instance handle is read.

Return

Return

>=0 - Success (number of samples read).

<0 - Failure (use dds_err_nr() to get error value).

Parameters

reader_or_condition: Reader, readcondition or querycondition entity

buf: An array of pointers to samples into which data is read (pointers can be NULL)
si: Pointer to an array of dds_sample_info_t returned for each data value

bufsz: The size of buffer provided

maxs: Maximum number of samples to read

handle: Instance handle related to the samples to read

mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.

85

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

Used to release sample buffers returned by a read/take operation. When the application provides an empty
buffer, memory is allocated and managed by DDS. By calling dds_return_loan, the memory is released so
that the buffer can be reused during a successive read/take operation. When a condition is provided, the
reader to which the condition belongs is looked up.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.
Return A dds_return_t indicating success or failure
Parameters
* rd_or_cnd: Reader or condition that belongs to a reader
* buf: An array of (pointers to) samples
* bufsz: The number of (pointers to) samples stored in buf
DDS_EXPORT int dds_takecdr (dds_entity t reader_or condition, struct serdata ** buf, ui
_Inout_updates_ (bufsz)

_Pre_satisfies_(((entity & (0x7F000000))==DDS_KIND_READER) | | ((entity & (0x7F000000))==DD
Begin coherent publishing or begin accessing a coherent set in a subscriber.

End coherent publishing or end accessing a coherent set in a subscriber.

86 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Invoking on a Writer or Reader behaves as if dds_begin_coherent was invoked on its parent Publisher or
Subscriber respectively.

Invoking on a Writer or Reader behaves as if dds_end_coherent was invoked on its parent Publisher or
Subscriber respectively.

Return A dds_return_t indicating success or failure.
Parameters
* entity: The entity that is prepared for coherent access.
Return Value
* DDS_RETCODE_OK: The operation was successful.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The provided entity is invalid or not supported.

Invoking on a Writer or Reader behaves as if dds_end_coherent was invoked on its parent Publisher or
Subscriber respectively.

Return A dds_return_t indicating success or failure.
Parameters

* entity: The entity on which coherent access is finished.
Return Value

* DDS_RETCODE_OK: The operation was successful.

* DDS_RETCODE_BAD_PARAMETER: The provided entity is invalid or not supported.

Return - A dds_return_t indicating success or failure
Parameters

* e: - The entity on which coherent access is finished
Return Value

* DDS_RETCODE_OK: The operation was successful DDS_RETCODE_BAD_PARAMETER The
provided entity is invalid or not supported

_Pre_satisfies_((subscriber & (0x7F000000)) = =DDS_KIND_SUBSCRIBER)
Trigger DATA_AVAILABLE event on contained readers.

The DATA_AVAILABLE event is broadcast to all readers owned by this subscriber that currently have
new data available. Any on_data_available listener callbacks attached to respective readers are invoked.
Return A dds_return_t indicating success or failure.
Parameters

* subscriber: A valid subscriber handle.
Return Value

* DDS_RETCODE_OK: The operation was successful.

* DDS_RETCODE_BRAD_PARAMETER: The provided subscriber is invalid.

87

VortexDDS, Release 0.1.0

Variables

DDS_EXPORT const dds_entity t DDS_BUILTIN_ TOPIC DCPSPARTICIPANT
DDS_EXPORT const dds_entity t DDS_BUILTIN_ TOPIC_CMPARTICIPANT
DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC_DCPSTYPE
DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC DCPSTOPIC
DDS_EXPORT const dds_entity t DDS_BUILTIN_ TOPIC_DCPSPUBLICATION
DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC_CMPUBLISHER
DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC_DCPSSUBSCRIPTION
DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC_CMSUBSCRIBER
DDS_EXPORT const dds_entity t DDS_BUILTIN_ TOPIC_CMDATAWRITER

DDS_EXPORT const dds_entity t DDS_BUILTIN_TOPIC_CMDATAREADER

Out void _Out_ dds_sample_info_t _In_ uint32_t _In_dds_instance_handle_t _In_

Out dds_instance_handle_tx* ihdl

Out uint32_t * status

_In_opt_ const dds_gos_t * gos

In opt const dds_qgos_t _In opt_ const dds_listener_t x listener
_Out_opt_ dds_entity t*x children

In size_t size

Out dds_domainid t* id

In const dds_topic_descriptor_t* descriptor

_In z const char * name

In uint32_t _In_dds_querycondition_ filter_fn filter
_In dds_duration_t timeout

dds_duration_t max_wait

uint3

Out void _Out_ dds_sample_info_t _In_ uint32_t _In_ dds_instance_handle_t handle

_In const void * data

In const void _In_dds_time_t timestamp
const void *edr

In dds_entity t entity

_In dds_entity_ t _In_dds_attach_t x
In bool trigger

In_ size_ t nxs

In_ size t _In dds_duration_t reltimeout

~In size t _In_ dds_time_t abstimeout

Out void *x buf

Out void _Out_ dds_sample_info_t * si

88

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

_In size_t bufsz

Out void

Out dds_sample_info_t _In_ uint32_t maxs

dds instance_handle t inst

file dds_public_alloc.h
#include “os/os_public.h”#include “ddsc/dds_export.h” DDS C Allocation APL.

This header file defines the public API of allocation convenience functions in the VortexDDS C language bind-

ing.

Defines

DDS_FREE_KEY BIT

DDS_FREE_CONTENTS_BIT

DDS_FREE_ALL_BIT

Typedefs

typedef struct dds_allocator dds_allocator_t

typedef struct dds_aligned_allocator dds_aligned_allocator_t

typedef void *(*dds_alloc_f£n_t) (size_t)

typedef void *(*dds_realloc_£fn_t) (void *, size_t)

typedef void (*dds_free_£fn_t) (void *)

Enums

enum dds_free_op_t

Values:

DDS_FREE_ALL = 0x01 | 0x02 | 0x04

DDS_FREE_CONTENTS = 0x01 | 0x02

DDS_FREE_KEY = 0x01

Functions

DDS_EXPORT
DDS_EXPORT
DDS_EXPORT
DDS_EXPORT
DDS_EXPORT
DDS_EXPORT
DDS_EXPORT

DDS_EXPORT

void dds_set_allocator(const dds_allocator t = n, dds_allocator_t

void dds_set_aligned_allocator(const dds_aligned allocator_t
void* dds_alloc(size_t size)

voidx dds_realloc(void * ptr, size_t size)

voidx dds_realloc_zero(void * ptr, size_t size)

void dds_free(void * ptr)

char* dds_string alloc(size_t size)

char* dds_string dup(const char x str)

*

89

n,

* 0)

dds_ali

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_string free(char * str)

DDS_EXPORT void dds_sample_ free(void * sample,

filedds_public_error.h
#include “os/os_public.h”#include “ddsc/dds_export.h” DDS C Error APL

const struct dds_topic_descriptor

This header file defines the public API of error values and convenience functions in the VortexDDS C language

binding.

Return codes

DDS_RETCODE_OK
Success

DDS_RETCODE_ERROR
Non specific error

DDS_RETCODE_UNSUPPORTED
Feature unsupported

DDS_RETCODE_BAD_ PARAMETER
Bad parameter value

DDS_RETCODE_PRECONDITION_NOT_MET
Precondition for operation not met

DDS_RETCODE_OUT_OF_RESOURCES
When an operation fails because of a lack of resources

DDS_RETCODE_NOT_ENABLED
When a configurable feature is not enabled

DDS_RETCODE_IMMUTABLE_POLICY
When an attempt is made to modify an immutable policy

DDS_RETCODE__INCONSISTENT_POLICY
When a policy is used with inconsistent values

DDS_RETCODE_ALREADY DELETED
When an attempt is made to delete something more than once

DDS_RETCODE_TIMEOUT
When a timeout has occurred

DDS_RETCODE_NO_DATA
When expected data is not provided

DDS RETCODE_ ILLEGAL OPERATION
When a function is called when it should not be

DDS_RETCODE_NOT_ALLOWED_BY_ SECURITY
When credentials are not enough to use the function

DDS_Error_Type

DDS_CHECK_REPORT
DDS_CHECK_FAIL

DDS_CHECK_EXIT

90

Chapter 6. Vortex DDS C API Reference

*

d

VortexDDS, Release 0.1.0

Macros for error handling

DDS_TO_STRING (n)

DDS_INT TO_STRING (n)

Defines

DDS_ERR_NR_ MASK
DDS_ERR_LINE_MASK
DDS_ERR _FILE_ID_ MASK
DDS_SUCCESS

dds_err_ nr (e)
Macro to extract error number

dds_err_line (e)
Macro to extract line number

dds_err file id(e)
Macro to extract file identifier

DDS_ERR_CHECK (e, f)
Macro that defines dds_err_check function

DDS_FAIL (m)
Macro that defines dds_fail function

Typedefs

typedef void (*dds_fail_£n) (const char *, const char *)
Failure handler

Functions

DDS_EXPORT const char* dds_err str(dds_return_t err)
Takes the error value and outputs a string corresponding to it.
Return String corresponding to the error value
Parameters
» err: Error value to be converted to a string
DDS_EXPORT bool dds_err check(dds_return_ t err, unsigned flags, const char x where)
Takes the error number, error type and filename and line number and formats it to a string which can be
used for debugging.
Return true - True
Return false - False
Parameters

e err: Error value

91

VortexDDS, Release 0.1.0

* flags: Indicates Fail, Exit or Report

¢ where: File and line number

DDS_EXPORT void dds_fail_set (dds_fail_ fn £n)

Set the failure function.

Parameters

e fn: Function to invoke on failure

DDS_EXPORT dds_fail fn dds_fail get (void)

Get the failure function.

Return Failure function

DDS_EXPORT void dds_fail (const char * msg,

Handles failure through an installed failure handler.

const char * where)

[in] msg String containing failure message [in] where String containing file and location

file dds_public_impl.h
#include “ddsc/dds_public_alloc.h”#include “ddsc/dds_public_stream.h”#include “os/os_public.h’#include

“ddsc/dds_export.h” DDS C Implementation APIL.

This header file defines the public API for all kinds of things in the VortexDDS C language binding.

Defines

DDS_LENGTH_UNLIMITED
DDS_TOPIC_NO_OPTIMIZE
DDS_TOPIC_FIXED_KEY
DDS_READ_SAMPLE_STATE
DDS_NOT_READ_SAMPLE_STATE

DDS_ANY_ SAMPLE_STATE

DDS_NEW_VIEW_STATE
DDS_NOT_NEW_VIEW_STATE

DDS_ANY_ VIEW_STATE
DDS_ALIVE_INSTANCE_STATE
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
DDS_ANY_ INSTANCE_ STATE

DDS_ANY_STATE

DDS_DOMAIN_ DEFAULT

DDS_HANDLE_NIL

DDS_ENTITY NIL

DDS_ENTITY KIND_MASK

DDS_OP_RTS

92

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_OP_ADR
DDS_OP_JSR
DDS_OP_JEQ
DDS_OP_VAL_1BY
DDS_OP_VAL_2BY
DDS_OP_VAL_4BY
DDS_OP_VAL_8BY
DDS_OP_VAL_STR
DDS_OP_VAL_BST
DDS_OP_VAL_SEQ
DDS_OP_VAL_ARR
DDS_OP_VAL_UNI
DDS_OP_VAL_STU
DDS_OP_TYPE_1BY
DDS_OP_TYPE_ 2BY
DDS_OP_TYPE_4BY
DDS_OP_TYPE_ 8BY
DDS_OP_TYPE_ STR
DDS_OP_TYPE_SEQ
DDS_OP_TYPE_ARR
DDS_OP_TYPE_UNI
DDS_OP_TYPE_STU
DDS_OP_TYPE_BST
DDS_OP_TYPE_BOO
DDS_OP_SUBTYPE_BOO
DDS_OP_SUBTYPE_1BY
DDS_OP_SUBTYPE_2BY
DDS_OP_SUBTYPE_4BY
DDS_OP_SUBTYPE_8BY
DDS_OP_SUBTYPE_STR
DDS_OP_SUBTYPE_SEQ
DDS_OP_SUBTYPE_ARR
DDS_OP_SUBTYPE_UNI
DDS_OP_SUBTYPE_STU
DDS_OP_SUBTYPE_BST

DDS_OP_FLAG_KEY

93

VortexDDS, Release 0.1.0

DDS_OP_FLAG_DEF

Typedefs

typedef struct dds_sequence dds_sequence_t

typedef struct dds_key_descriptor dds_key_descriptor_t
typedef struct dds_topic_descriptor dds_topic_descriptor_t
typedef enum dds_entity_kind dds_entity_kind_t

typedef uint64_t dds_instance_handle_t

typedef int32_tdds_domainid_t

Enums

enum dds_entity kind
Values:

DDS_KIND_DONTCARE = (0x00000000
DDS_KIND_TOPIC = 0x01000000
DDS_KIND_PARTICIPANT = 0x02000000
DDS_KIND_READER = 0x03000000
DDS_KIND_WRITER = 0x04000000
DDS_KIND_SUBSCRIBER = 0x05000000
DDS_KIND_PUBLISHER = 0x06000000
DDS_KIND_COND_READ = 0x07000000
DDS_KIND_COND_QUERY = 0x08000000
DDS_KIND_WAITSET = 0x09000000

DDS_KIND_INTERNAL = 0x0A000000

Functions

DDS_EXPORT void dds_write_set_batch (bool enable)
Description : Enable or disable write batching. Overrides default configuration setting for write batching
(DDSI2E/Internal/WriteBatch).

Arguments :
1. enable Enables or disables write batching for all writers.

DDS_EXPORT void dds_ssl_plugin(void)
Description : Install tcp/ssl and encryption support. Depends on openssl.

Arguments :

1. None

94 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_durability plugin (void)
Description : Install client durability support. Depends on OSPL server.

Arguments :
1. None

file dds_public_listener.h
#include “ddsc/dds_export.h”#include “ddsc/dds_public_impl.h” #include “ddsc/dds_public_status.h”#include
“os/os_public.h” DDS C Listener API.

This header file defines the public API of listeners in the VortexDDS C language binding.

Defines
DDS_LUNSET
Typedefs
typedef void (*dds_on_inconsistent_topic_fn) (dds_entity_t topic, const
dds_inconsistent_topic_status_t status,
void *arg)
typedef void (*dds_on_liveliness_lost_f£fn) (dds_entity_t writer, const
dds liveliness_lost _status _t status, void
*arg)
typedef void (*dds_on_offered_deadline_missed_f£fn) (dds_entity_t writer, const

dds_offered_deadline_missed_status_t
status, void *arg)

typedef void (*dds_on_offered_incompatible_gos_f£fn) (dds_entity_t writer, const
dds_offered_incompatible_qos_status_t
status, void *arg)

typedef void (*dds_on_data_on_readers_£n) (dds_entity_t subscriber, void *arg)

typedef void (*dds_on_sample_lost_£n) (dds_entity_t reader, const
dds_sample_lost_status_t status, void *arg)

typedef void (*dds_on_data_available_£n) (dds_entity_t reader, void *arg)

typedef void (*dds_on_sample_rejected_f£fn) (dds_entity_t reader, const
dds_sample_rejected_status_t status, void

*arg)
typedef void (*dds_on_liveliness_changed_£n) (dds_entity_t reader, const
dds_liveliness_changed_status_t sta-

tus, void *arg)

typedef void (*dds_on_requested_deadline_missed_£n) (dds_entity_t reader, const
dds_requested_deadline_missed_status_t
status, void *arg)

typedef void (*dds_on_requested_incompatible_gos_£n) (dds_entity_t reader, const
dds_requested_incompatible_qos_status_t
status, void *arg)

typedef void (*dds_on_publication_matched_f£n) (dds_entity_t writer, const

dds_publication_matched_status_t
status, void *arg)

95

VortexDDS, Release 0.1.0

reader, const

typedef void (*dds_on_subscription_matched_£n) (dds_entity_t
dds_subscription_matched_status_t

status, void *arg)

typedef struct c_listener dds_listener_t

Functions

_Ret_notnull_ DDS_EXPORT dds_listener_t* dds_listener_ create(_In_opt_ void * arg)
Allocate memory and initializes to default values (::DDS_LUNSET) of a listener.

Return Returns a pointer to the allocated memory for dds_listener_t structure.

Parameters
* arg: optional pointer that will be passed on to the listener callbacks
DDS_EXPORT void dds_listener delete(_In__Post_invalid dds_listener_t *x listener)

Delete the memory allocated to listener structure.

Parameters
* listener: pointer to the listener struct to delete

DDS_EXPORT void dds_listener_ reset (_Out_ dds_listener_t * listener)
Reset the listener structure contents to ::DDS_LUNSET.

Parameters

* listener: pointer to the listener struct to reset
_In const dds_listener

DDS_EXPORT void dds_listener copy(_Out_ dds_listener_t * dst,
Copy the listener callbacks from source to destination.

Parameters
* dst: The pointer to the destination listener structure, where the content is to copied

» src: The pointer to the source listener structure to be copied
DDS_EXPORT void dds_listener_merge(_Inout_ dds_listener_t * dst, _In_ const dds_listen

Copy the listener callbacks from source to destination, unless already set.
Any listener callbacks already set in dst (including NULL) are skipped, only those set to DDS_LUNSET

are copied from src.
Parameters
* dst: The pointer to the destination listener structure, where the content is merged

» src: The pointer to the source listener structure to be copied

DDS_EXPORT void dds_lset_inconsistent_topic(_Inout_ dds_listener_t * listener, _In_opt
Set the inconsistent_topic callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback

pointer

96 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_lset_liveliness_lost (_Inout_ dds_listener_t x listener, _In_opt_ d

Set the liveliness_lost callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_offered deadline _missed(_Inout_ dds_listener t * listener,
Set the offered_deadline_missed callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

* callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_offered incompatible gos(_Inout_ dds_listener_t * listener,

Set the offered_incompatible_qos callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

¢ callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

_I

DDS_EXPORT void dds_lset_data_on_readers(_Inout_ dds_listener_t x listener, _In_opt_ d

Set the data_on_readers callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_sample_lost (_Inout_ dds_listener_t * listener, _In_opt_ dds_o;

Set the sample_lost callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_data_available(_Inout_ dds_listener_t x listener, _In_opt_ dd

Set the data_available callback in the listener structure.

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_ sample_ rejected(_Inout_ dds_listener_t x listener, _In opt_ d

Set the sample_rejected callback in the listener structure.

97

VortexDDS, Release 0.1.0

Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_liveliness_changed(_Inout_ dds_listener_t * listener, _In_opt
Set the liveliness_changed callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

¢ callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_requested_deadline_missed(_Inout_ dds_listener_t x listener,
Set the requested_deadline_missed callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

* callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_requested_incompatible_gos(_Inout_ dds_listener_t * listener,
Set the requested_incompatible_qos callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_publication_matched(_Inout_ dds_listener_ t x listener, _In_op
Set the publication_matched callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lset_subscription_matched(_Inout_ dds_listener_ t x listener, _In_o]
Set the subscription_matched callback in the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be set

e callback: The callback to set in the listener, can be NULL, ::DDS_LUNSET or a valid callback
pointer

DDS_EXPORT void dds_lget_inconsistent_topic(_In_ const dds_listener_t x listener, _Out]
Get the inconsistent_topic callback from the listener structure.
Parameters

* listener: The pointer to the listener structure, where the callback will be retrieved from

98 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_ liveliness_lost (_In_ const dds_listener t x listener, _Outptr
Get the liveliness_lost callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_offered deadline_missed(_In_ const dds_listener_t * listener,
Get the offered_deadline_missed callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget offered incompatible gos(_In_const dds_listener t * listener
Get the offered_incompatible_qos callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_data_on_readers(_In_ const dds_listener_t x listener, _Outptr
Get the data_on_readers callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_sample_lost (_In_ const dds_listener_t x listener, _Outptr_res
Get the sample_lost callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_data available(_In_ const dds_listener_t *x listener, _Outptr
Get the data_available callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

99

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_lget_sample_rejected(_In_ const dds_listener_t * listener, _Outptr
Get the sample_rejected callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_liveliness_changed(_In_ const dds_listener t * listener, _Out;
Get the liveliness_changed callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

* callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_requested _deadline missed(_In_ const dds_listener_t * listene
Get the requested_deadline_missed callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_requested_incompatible_gos(_In_ const dds_listener t * listen
Get the requested_incompatible_qos callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_publication_matched(_In_ const dds_listener_t * listener, _Ou
Get the publication_matched callback from the listener structure.
Parameters
* listener: The pointer to the listener structure, where the callback will be retrieved from

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

DDS_EXPORT void dds_lget_subscription_matched(_In_ const dds_listener_t * listener, _O
Get the subscription_matched callback from the listener structure.
Parameters

e callback: Pointer where the retrieved callback can be stored; can be NULL, ::DDS_LUNSET
or a valid callback pointer

* listener: The pointer to the listener structure, where the callback will be retrieved from

100 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

file dds_public_log.h
#include “os/os_public.h”#include “ddsc/dds_export.h” DDS C Logging APL.

This header file defines the public API for logging in the VortexDDS C language binding.

Functions

DDS_EXPORT void dds_log_info(const char * fmt, ...)
DDS_EXPORT void dds_log warn(const char x fmt, ...)
DDS_EXPORT void dds_log_error(const char * fmt, ...)
DDS_EXPORT void dds_log_fatal (const char * fmt, ...)

file dds_public_gos.h
#include “os/os_public.h”#include “ddsc/dds_export.h” DDS C QoS APIL.

This header file defines the public API of QoS and Policies in the VortexDDS C language binding.

QoS identifiers

DDS_INVALID_QOS_POLICY_ID
DDS_USERDATA_QOS_POLICY ID
DDS_DURABILITY QOS_POLICY_ID
DDS_PRESENTATION_QOS_POLICY_ID
DDS_DEADLINE_QOS_POLICY ID

DDS_ LATENCYBUDGET QOS_POLICY ID
DDS_OWNERSHIP_QOS_POLICY_ ID
DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ ID
DDS_LIVELINESS_ QOS_POLICY_ID
DDS_TIMEBASEDFILTER_QOS_POLICY_ ID
DDS_PARTITION_QOS_POLICY_ ID
DDS_RELIABILITY QOS_POLICY_ ID
DDS_DESTINATIONORDER QOS_POLICY ID
DDS_HISTORY_QOS_POLICY_ID
DDS_RESOURCELIMITS_QOS_POLICY_ ID
DDS_ENTITYFACTORY QOS_POLICY ID
DDS_WRITERDATALIFECYCLE QOS_POLICY ID
DDS_READERDATALIFECYCLE QOS_POLICY ID
DDS_TOPICDATA_QOS_POLICY_ ID
DDS_GROUPDATA_QOS_POLICY_ ID
DDS_TRANSPORTPRIORITY QOS_POLICY ID

DDS_LIFESPAN QOS_POLICY_ ID

101

VortexDDS, Release 0.1.0

DDS_DURABILITYSERVICE_QOS_POLICY_ID

Typedefs

typedef struct nn_xqosdds_gos_t
QoS structure

typedef enum dds_durability_kind dds_durability kind_ t
Durability QoS: Applies to Topic, DataReader, DataWriter

typedef enum dds_history_kind dds_history kind_t
History QoS: Applies to Topic, DataReader, DataWriter

typedef enum dds_ownership_kind dds_ownership_kind_t
Ownership QoS: Applies to Topic, DataReader, DataWriter

typedef enum dds_liveliness_kind dds_liveliness_kind_t
Liveliness QoS: Applies to Topic, DataReader, DataWriter

typedef enumdds_reliability_kind dds_reliability_kind_t
Reliability QoS: Applies to Topic, DataReader, DataWriter

typedef enum dds_destination_order_kind dds_destination_order_kind_t
DestinationOrder QoS: Applies to Topic, DataReader, DataWriter

typedef struct dds_history_gospolicy dds_history_gospolicy_ t
History QoS: Applies to Topic, DataReader, DataWriter

typedef struct dds_resource_limits_qospolicy dds_resource_limits_gospolicy t
ResourceLimits QoS: Applies to Topic, DataReader, DataWriter

typedef enum dds_presentation_access_scope_kind dds_presentation_access_scope_kind_t
Presentation QoS: Applies to Publisher, Subscriber

Enums

enum dds_durability kind
Durability QoS: Applies to Topic, DataReader, DataWriter

Values:

DDS_DURABILITY VOLATILE
DDS_DURABILITY TRANSIENT_ LOCAL
DDS_DURABILITY TRANSIENT
DDS_DURABILITY PERSISTENT

enum dds_history_kind
History QoS: Applies to Topic, DataReader, DataWriter

Values:
DDS_HISTORY KEEP_ LAST
DDS_HISTORY KEEP ALL

enum dds_ownership_kind
Ownership QoS: Applies to Topic, DataReader, DataWriter

Values:

102 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_OWNERSHIP_SHARED
DDS_OWNERSHIP_EXCLUSIVE

enum dds_liveliness_kind
Liveliness QoS: Applies to Topic, DataReader, DataWriter

Values:

DDS_LIVELINESS_AUTOMATIC
DDS_LIVELINESS_ MANUAL BY PARTICIPANT
DDS_LIVELINESS_MANUAL_BY_ TOPIC

enum dds_reliability kind
Reliability QoS: Applies to Topic, DataReader, DataWriter

Values:
DDS_RELIABILITY BEST EFFORT
DDS_RELIABILITY RELIABLE

enum dds_destination_order_kind
DestinationOrder QoS: Applies to Topic, DataReader, DataWriter

Values:
DDS_DESTINATIONORDER_ BY RECEPTION_ TIMESTAMP
DDS DESTINATIONORDER BY SOURCE_TIMESTAMP

enum dds_presentation_access_scope_kind
Presentation QoS: Applies to Publisher, Subscriber

Values:
DDS_ PRESENTATION_ INSTANCE
DDS_ PRESENTATION TOPIC

DDS_PRESENTATION_GROUP

Functions

_Ret_notnull_ DDS_EXPORT dds_gos_t* dds_gos_create (void)
Allocate memory and initialize default QoS-policies.
Return - Pointer to the initialized dds_qos_t structure, NULL if unsuccessful.
DDS_EXPORT void dds_gos_delete(_In_ _Post_invalid_dds_gos_t * gos)
Delete memory allocated to QoS-policies structure.
Parameters
* gos: - Pointer to dds_qos_t structure
DDS_EXPORT void dds_gos_reset (_Out_ dds_gos_t = gos)
Reset a QoS-policies structure to default values.
Parameters

* gos: - Pointer to the dds_qos_t structure

103

VortexDDS, Release 0.1.0

DDS_EXPORT dds_return_t dds_gos_copy(_Out_ dds_gos_t * dst, _In_ const dds_gos_t =«

Copy all QoS-policies from one structure to another.

Return - Return-code indicating success or failure

Parameters
* dst: - Pointer to the destination dds_qos_t structure

* src: - Pointer to the source dds_qos_t structure

DDS_EXPORT void dds_gos_merge(_Inout_ dds_gqgos_t
Copy all QoS-policies from one structure to another, unless already set.

* dst, _In_ const dds_qgos_t = src)

Policies are copied from src to dst, unless src already has the policy set to a non-default value.

Parameters
* dst: - Pointer to the destination qos structure

* src: - Pointer to the source qos structure

DDS_EXPORT void dds_gset_userdata(_Inout_ dds_qgos_t * gos, _In_reads_bytes_opt_(sz) |

Set the userdata of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the userdata

e value: - Pointer to the userdata

e sz: - Size of userdata stored in value

DDS_EXPORT void dds_gset_topicdata(_Inout_ dds_gos_t * gos, _In_reads_bytes_opt_(sz)

Set the topicdata of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the topicdata

* value: - Pointer to the topicdata

* sz: - Size of the topicdata stored in value

DDS_EXPORT void dds_gset_groupdata(_Inout_ dds_qgos_t * gos, _In_reads_bytes_opt_(sz)

Set the groupdata of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the groupdata

* value: - Pointer to the group data

* sz: - Size of groupdata stored in value

DDS_EXPORT void dds_gset_durability(_Inout_ dds_gos_t * qos, _In range_(DDS_DURABILI

Set the durability policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* kind: - Durability kind value DCPS_QoS_Durability

104 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_gset_history(_Inout_ dds_gos_t * gos, _In_range_(DDS_HISTORY_KEE!
Set the history policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* kind: - History kind value DCPS_QoS_History
* depth: - History depth value DCPS_QoS_History
DDS_EXPORT void dds_gset_resource_limits(_Inout_ dds_gos_t * gos, _In_range_(>=, DDS
Set the resource limits policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* max_samples: - Number of samples resource-limit value
* max_instances: - Number of instances resource-limit value
* max_samples_per_instance: - Number of samples per instance resource-limit value
DDS_EXPORT void dds_gset presentation(_Inout_ dds_gos_t +* gos, _In range_ (DDS_PRESEN
Set the presentation policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* access_scope: - Access-scope kind
e coherent_access: - Coherent access enable value
* ordered_access: - Ordered access enable value
DDS_EXPORT void dds_gset_lifespan(_Inout_ dds_gos_t * gos, _In_range_ (0, DDS_INFINIT
Set the lifespan policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* lifespan: - Lifespan duration (expiration time relative to source timestamp of a sample)
DDS_EXPORT void dds_gset_deadline(_Inout_ dds_gos_t * gos, _In_range_(0, DDS_INFINIT
Set the deadline policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* deadline: - Deadline duration
DDS_EXPORT void dds_gset_ latency budget (_Inout_ dds_gos_t +* qgos, _In range_ (0, DDS_II
Set the latency-budget policy of a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* duration: - Latency budget duration

105

VortexDDS, Release 0.1.0

DDS_EXPORT void dds_gset_ownership(_Inout_ dds_gos_t * gqos, _In_range_ (DDS_OWNERSHIP

Set the ownership policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* kind: - Ownership kind

DDS_EXPORT void dds_gset_ownership strength(_Inout_ dds_qos_t * gos, _In_int32_t va

Set the ownership strength policy of a qos structure.

param[in,out] qos - Pointer to a dds_qos_t structure that will store the policy param[in] value - Ownership
strength value

DDS_EXPORT void dds_gset_liveliness(_Inout_ dds_gos_t * qos, _In range_(DDS_LIVELINE

Set the liveliness policy of a qos structure.

param[in,out] qos - Pointer to a dds_qos_t structure that will store the policy param[in] kind - Liveliness
kind param[in[lease_duration - Lease duration

DDS_EXPORT void dds_gset_time_based filter(_Inout_ dds_gqos_t * gos, _In_range_(0, DD

Set the time-based filter policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* minimum_separation: - Minimum duration between sample delivery for an instance

DDS_EXPORT void dds_gset_partition(_Inout_ dds_gos_t * gos, _In_ uint32_t n, _In_cou

Set the partition policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* n: - Number of partitions stored in ps

DDS_EXPORT void dds_gset_reliability(_Inout_ dds_gos_t * qos, _In range_(DDS_RELIABI:

Set the reliability policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy
* kind: - Reliability kind

* max_blocking_time: - Max blocking duration applied when kind is reliable.

DDS_EXPORT void dds_gset_transport_priority(_Inout_ dds_gqos_t * gos, _In_ int32_t va

Set the transport-priority policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* value: - Priority value

DDS_EXPORT void dds_gset_destination_order(_Inout_ dds_qgos_t * qgos, _In range_ (DDS_D:

Set the destination-order policy of a qos structure.

106

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

e kind: - Destination-order Kind

DDS_EXPORT void dds_gset_writer_data_lifecycle(_Inout_ dds_gqos_t = gos, _In_ bool au

Set the writer data-lifecycle policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* autodispose_unregistered_instances: - Automatic disposal of unregistered in-
stances

DDS_EXPORT void dds_gset_ reader_data_lifecycle(_Inout_ dds_qos_t = gos, _In_range_ (0

Set the reader data-lifecycle policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* autopurge_nowriter_ samples_delay: - Delay for purging of samples from instances
in a no-writers state

* autopurge_disposed_samples_delay: - Delay for purging of samples from disposed
instances

DDS_EXPORT void dds_gset_durability service(_Inout_ dds_qos_t * gos, _In_ range_ (0, DI

Set the durability-service policy of a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure that will store the policy

* service_cleanup_delay: - Delay for purging of abandoned instances from the durability
service

* history_kind: - History policy kind applied by the durability service

* history_depth: - History policy depth applied by the durability service

* max_samples: - Number of samples resource-limit policy applied by the durability service

* max_instances: - Number of instances resource-limit policy applied by the durability service

* max_samples_per_instance: - Number of samples per instance resource-limit policy ap-
plied by the durability service

DDS_EXPORT void dds_gget_userdata(_In_ const dds_qos_t * qos, _Outptr_result_bytebuf

Get the userdata from a qos structure.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* value: - Pointer that will store the userdata

¢ sz: - Pointer that will store the size of userdata

DDS_EXPORT void dds_qgget_topicdata(_In_ const dds_gos_t * qos, _Outptr_ result_bytebu

Get the topicdata from a qos structure.

Parameters

107

VortexDDS, Release 0.1.0

* gos: - Pointer to a dds_qos_t structure storing the policy
* value: - Pointer that will store the topicdata
* sz: - Pointer that will store the size of topicdata
DDS_EXPORT void dds_gget_groupdata(_In_ const dds_qgos_t * gos, _Outptr_ result_bytebu
Get the groupdata from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* value: - Pointer that will store the groupdata
* sz: - Pointer that will store the size of groupdata
DDS_EXPORT void dds_qgget durability(_In_ const dds_qgos_t +* gos, _Out_ dds_durabilit;
Get the durability policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* kind: - Pointer that will store the durability kind
DDS_EXPORT void dds_gget_history(_In_ const dds_gos_t * gqos, _Out_opt_ dds_history .
Get the history policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* kind: - Pointer that will store the history kind (optional)
* depth: - Pointer that will store the history depth (optional)
DDS_EXPORT void dds_gget_resource_limits(_In_ const dds_gos_t * gos, _Out_opt_ int32
Get the resource-limits policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* max_samples: - Pointer that will store the number of samples resource-limit (optional)
* max_instances: - Pointer that will store the number of instances resource-limit (optional)

* max_samples_per_instance: - Pointer that will store the number of samples per instance
resource-limit (optional)

DDS_EXPORT void dds_gget_presentation(_In_ const dds_gos_t * gos, _Out_opt_ dds_pre
Get the presentation policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* access_scope: - Pointer that will store access scope kind (optional)
* coherent_access: - Pointer that will store coherent access enable value (optional)
* ordered_access: - Pointer that will store orderede access enable value (optional)

DDS_EXPORT void dds_gget_lifespan(_In_ const dds_qos_t * qos, _Out_ dds_duration_t
Get the lifespan policy from a qos structure.

108 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* lifespan: - Pointer that will store lifespan duration
DDS_EXPORT void dds_qgget_deadline(_In_ const dds_gos_t +* gos, _Out_ dds_duration_ t
Get the deadline policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* deadline: - Pointer that will store deadline duration
DDS_EXPORT void dds_qgget_latency budget (_In_ const dds_gqos_t * gos, _Out_ dds_durat
Get the latency-budget policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* duration: - Pointer that will store latency-budget duration
DDS_EXPORT void dds_qgget_ownership(_In_ const dds_gos_t * gos, _Out_ dds_ownership_ .
Get the ownership policy from a qos structure.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* kind: - Pointer that will store the ownership kind
DDS_EXPORT void dds_gget_ownership_ strength(_In_ const dds_qos_t * gos, _Out_ int32_:
Get the ownership strength qos policy.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* value: - Pointer that will store the ownership strength value
DDS_EXPORT void dds_qget_liveliness(_In_ const dds_qgos_t +* qos, _Out_opt_ dds_livel
Get the liveliness qos policy.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* kind: - Pointer that will store the liveliness kind (optional)
* lease_duration: - Pointer that will store the liveliness lease duration (optional)
DDS_EXPORT void dds_qgget_time_based_ filter(_In_ const dds_gqos_t * gos, _Out_ dds_du
Get the time-based filter qos policy.
Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* minimum_separation: - Pointer that will store the minimum separation duration (optional)

DDS_EXPORT void dds_qgget_partition(_In_ const dds_gos_ t = gos, _Out_ uint32_t * n, _
Get the partition qos policy.

109

VortexDDS, Release 0.1.0

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* n: - Pointer that will store the number of partitions (optional)
* ps: - Pointer that will store the string(s) containing partition name(s) (optional)

DDS_EXPORT void dds_qgget_reliability(_In_ const dds_gos_t +* qos, _Out_opt_ dds_reli,
Get the reliability qos policy.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* kind: - Pointer that will store the reliability kind (optional)

* max_blocking_time: - Pointer that will store the max blocking time for reliable reliability
(optional)

DDS_EXPORT void dds_qgget_transport_priority(_In_ const dds_gqos_t * gos, _Out_ int32_:

Get the transport priority qos policy.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
* value: - Pointer that will store the transport priority value

DDS_EXPORT void dds_qgget_destination_order(_In_const dds_qos_ t * gos, _Out_ dds_de
Get the destination-order qos policy.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy
e kind: - Pointer that will store the destination-order kind

DDS_EXPORT void dds_gget_writer_ _data_lifecycle(_In_ const dds_gos_t = gos, _Out_ boo
Get the writer data-lifecycle qos policy.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy

* autodispose_unregistered_instances: - Pointer that will store the autodispose un-
registered instances enable value

DDS_EXPORT void dds_qgget_reader_data_lifecycle(_In_const dds_gos_t = gos, _Out_opt_
Get the reader data-lifecycle qos policy.

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy

* autopurge_nowriter_samples_delay: - Pointer that will store the delay for auto-
purging samples from instances in a no-writer state (optional)

* autopurge_disposed_samples_delay: - Pointer that will store the delay for auto-
purging of disposed instances (optional)

DDS_EXPORT void dds_qget_ durability service(_In_const dds_qos t * gos, _Out_opt_ d

Get the durability-service qos policy values.

110 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* gos: - Pointer to a dds_qos_t structure storing the policy

* service_cleanup_delay: - Pointer that will store the delay for purging of abandoned in-
stances from the durability service (optional)

history_kind: - Pointer that will store history policy kind applied by the durability service
(optional)

history_depth: - Pointer that will store history policy depth applied by the durability service
(optional)

* max_samples: - Pointer that will store number of samples resource-limit policy applied by the
durability service (optional)

* max_instances: - Pointer that will store number of instances resource-limit policy applied by
the durability service (optional)

* max_samples_per_instance: - Pointer that will store number of samples per instance
resource-limit policy applied by the durability service (optional)

file dds_public_status.h
#include “os/os_public.h”#include “ddsc/dds_export.h” DDS C Communication Status API.

This header file defines the public API of the Communication Status in the VortexDDS C language binding.

Typedefs

typedef struct dds_offered_deadline_missed_status dds_offered_deadline_missed_status_t
DCPS_Status_OfferedDeadlineMissed

typedef struct dds_offered_incompatible_gos_status dds_offered_incompatible_gos_status_t
DCPS_Status_OfferedIncompatibleQoS

typedef struct dds_publication_matched_status dds_publication_matched_status_t
DCPS_Status_PublicationMatched

typedef struct dds_liveliness_lost_status dds_liveliness_lost_status_t
DCPS_Status_LivelinessLost

typedef struct dds_subscription_matched_status dds_subscription_matched_status_t
DCPS_Status_SubscriptionMatched

typedef struct dds_sample_rejected_status dds_sample_rejected_status_t
DCPS_Status_SampleRejected

typedef struct dds_liveliness_changed_status dds_liveliness_changed status_t
DCPS_Status_LivelinessChanged

typedef struct dds_requested_deadline_missed_status dds_requested_deadline missed_status_t
DCPS_Status_RequestedDeadlineMissed

typedef struct dds_requested_incompatible_qos_status dds_requested_incompatible_gos_status_t
DCPS_Status_RequestedIncompatibleQoS

typedef struct dds_sample_lost_status dds_sample_lost_status_t
DCPS_Status_SampleLost

typedef struct dds_inconsistent_topic_status dds_inconsistent_topic_status_t
DCPS_Status_InconsistentTopic

111

VortexDDS, Release 0.1.0

Enums

enum dds_sample_rejected_ status_kind
dds_sample_rejected_status_kind

Values:

DDS_NOT_REJECTED
DDS_REJECTED_BY_ INSTANCES_LIMIT
DDS_REJECTED_BY_SAMPLES_LIMIT

DDS_REJECTED_BY_ SAMPLES_PER_INSTANCE_LIMIT

Functions

_Pre_satisfies_((topic &DDS_ENTITY_ KIND MASK) = =DDS_KIND_TOPIC)
Get INCONSISTENT_TOPIC status.

This operation gets the status value corresponding to INCONSISTENT_TOPIC and reset the status. The
value can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and it
will reset the trigger value when status is enabled.
Return O - Success
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* topic: The entity to get the status
* status: The pointer to DCPS_Status_InconsistentTopic to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_(((writer &DDS_ENTITY KIND_ MASK)==DDS_KIND_ WRITER))
Get PUBLICATION_MATCHED status.

Get OFFERED_INCOMPATIBLE_QOS status.
Get OFFERED_DEADLINE_MISSED status.
Get LIVELINESS_LOST status.

This operation gets the status value corresponding to PUBLICATION_MATCHED and reset the status.
The value can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and
it will reset the trigger value when status is enabled.

This operation gets the status value corresponding to LIVELINESS_LOST and reset the status. The value
can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and it will
reset the trigger value when status is enabled.

Return O - Success

Return <0 - Failure (use dds_err_nr() to get error value).

112 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters
* writer: The entity to get the status
* status: The pointer to DCPS_Status_PublicationMatched to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to OFFERED_DEADLINE_MISSED and reset the
status. The value can be obtained, only if the status is enabled for an entity. NULL value for status is
allowed and it will reset the trigger value when status is enabled.

Return O - Success
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The entity to get the status
* status: The pointer to DCPS_Status_LivelinessLost to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to OFFERED_INCOMPATIBLE_QOS and reset the
status. The value can be obtained, only if the status is enabled for an entity. NULL value for status is
allowed and it will reset the trigger value when status is enabled.

Return 0 - Success
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The entity to get the status
* status: The pointer to DCPS_Status_OfferedDeadlineMissed to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Return 0 - Success
Return <O - Failure (use dds_err_nr() to get error value).

Parameters

113

VortexDDS, Release 0.1.0

» writer: The writer entity to get the status
* status: The pointer to DCPS_Status_OfferedIncompatibleQoS to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_ ((reader &DDS_ENTITY_KIND_MASK) = =DDS_KIND_READER)

Get SUBSCRIPTION_MATCHED status.

Get REQUESTED_INCOMPATIBLE_QOS status.
Get REQUESTED_DEADLINE_MISSED status.
Get SAMPLE_LOST status.

Get SAMPLE_REJECTED status.

Get LIVELINESS_CHANGED status.

This operation gets the status value corresponding to SUBSCRIPTION_MATCHED and reset the status.
The value can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and
it will reset the trigger value when status is enabled.

This operation gets the status value corresponding to LIVELINESS_CHANGED and reset the status. The
value can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and it
will reset the trigger value when status is enabled.

Return O - Success
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader: The reader entity to get the status
* status: The pointer to DCPS_Status_SubscriptionMatched to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to SAMPLE_REJECTED and reset the status. The
value can be obtained, only if the status is enabled for an entity. NULL value for status is allowed and it
will reset the trigger value when status is enabled.

Return 0 - Success
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* reader: The entity to get the status

* status: The pointer to DCPS_Status_LivelinessChanged to get the status

114

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to SAMPLE_LOST and reset the status. The value can
be obtained, only if the status is enabled for an entity. NULL value for status is allowed and it will reset
the trigger value when status is enabled.

Return O - Success
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader: The entity to get the status
* status: The pointer to DCPS_Status_SampleRejected to get the status
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to REQUESTED_DEADLINE_MISSED and reset the
status. The value can be obtained, only if the status is enabled for an entity. NULL value for status is
allowed and it will reset the trigger value when status is enabled.

Return A dds_return_t indicating success or failure
Parameters
* reader: The entity to get the status
* status: The pointer to DCPS_Status_SampleLost to get the status
Return Value
* DDS_RETCODE_ OK: Success
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation gets the status value corresponding to REQUESTED_INCOMPATIBLE_QOS and reset
the status. The value can be obtained, only if the status is enabled for an entity. NULL value for status is
allowed and it will reset the trigger value when status is enabled.

Return A dds_return_t indicating success or failure
Parameters
* reader: The entity to get the status

* status: The pointer to DCPS_Status_RequestedDeadlineMissed to get the status

115

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_OK: Success
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Return A dds_return_t indicating success or failure
Parameters
* reader: The entity to get the status
* status: The pointer to DCPS_Status_RequestedIncompatibleQoS to get the status
Return Value
e DDS_RETCODE_OK: Success
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Variables

_Out_opt_ dds_requested_incompatible_gos_status_tx status

filedds_public_stream.h
#include “os/os_public.h”#include <stdbool. h>#include “ddsc/dds_export.h” DDS C Stream APIL.

This header file defines the public API of the Streams in the VortexDDS C language binding.

Defines

DDS_STREAM BE
DDS_STREAM LE

dds_stream read char (s)
dds_stream read int8 (s)
dds_stream read_ int16 (s)
dds_stream read int32(s)
dds_stream read inté64 (s)
dds_stream write_char(s,v)
dds_stream write_int8 (s, V)
dds_stream write_intl16 (s, V)

dds_stream write_int32 (s, V)

116 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

dds_stream write_int64 (s, V)

Typedefs

typedef struct dds_stream dds_stream_t

Functions

DDS_EXPORT dds_stream_tx dds_stream create(size_t size)

DDS_EXPORT void dds_stream delete(dds_stream t * st)

DDS_EXPORT void dds_stream fini(dds_stream t =« st)

DDS_EXPORT void dds_stream reset (dds_stream t * st)

DDS_EXPORT void dds_stream init (dds_stream t * st, size_t size)

DDS_EXPORT void dds_stream grow(dds_stream t st, size_t size)

DDS_EXPORT bool dds_stream endian (void)

DDS_EXPORT bool dds_stream read_bool(dds_stream t = is)

DDS_EXPORT uint8_t dds_stream read uint8(dds_stream t =+ is)

DDS_EXPORT uintl6_t dds_stream read uintlé6(dds_stream t * is)

DDS_EXPORT uint32_t dds_stream read uint32(dds_stream t = is)

DDS_EXPORT uint64_t dds_stream read uint64 (dds_stream t = is)

DDS_EXPORT float dds_stream read float (dds_stream t * is)

DDS_EXPORT double dds_stream read double(dds_stream t * is)

DDS_EXPORT char* dds_stream read string(dds_stream t * is)

DDS_EXPORT void dds_stream read_buffer (dds_stream t * is, uint8 t * buffer, uint32_t
DDS_EXPORT void dds_stream write_bool (dds_stream t * os, bool val)
DDS_EXPORT void dds_stream write_uint8(dds_stream t * os, uint8_t wval)
DDS_EXPORT void dds_stream write_uintlé6(dds_stream t * os, uintlé6_t wval)
DDS_EXPORT void dds_stream write_uint32(dds_stream t * os, uint32_t wval)
DDS_EXPORT void dds_stream write_uint64(dds_stream t * os, uinté64_t wval)
DDS_EXPORT void dds_stream write_float (dds_stream t = os, float val)
DDS_EXPORT void dds_stream write_double(dds_stream t * os, double val)
DDS_EXPORT void dds_stream write_string(dds_stream t * os, const char * val)
DDS_EXPORT void dds_stream write_buffer(dds_stream t * os, uint32_t len, uint8_t * bu

file dds_public_time.h
#include “os/os_public.h” #include “ddsc/dds_export.h” DDS C Time support APL

This header file defines the public API of the in the VortexDDS C language binding.

117

VortexDDS, Release 0.1.0

Macro definition for time units in nanoseconds.

DDS_NSECS_IN_ SEC
DDS_NSECS_IN MSEC
DDS_NSECS_IN USEC

Infinite timeout for indicate absolute time

DDS_NEVER

Infinite timeout for relative time

DDS_INFINITY

Macro definition for time conversion from nanoseconds

DDS_SECS (n)
DDS_MSECS (n)

DDS_USECS (n)

Typedefs

typedef int64_tdds_time_t
Absolute Time definition

typedef int64_t dds_duration_t
Relative Time definition

Functions

DDS_EXPORT dds_time_t dds_time (void)
Description : This operation returns the current time (in nanoseconds)

Arguments :
1. Returns current time

DDS_EXPORT void dds_sleepfor (dds_duration_t n)
Description : This operation blocks the calling thread until the relative time n has elapsed

Arguments :
1. n Relative Time to block a thread

DDS_EXPORT void dds_sleepuntil (dds_time_t n)
Description : This operation blocks the calling thread until the absolute time n has elapsed

Arguments :

1. n absolute Time to block a thread

118 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

file ddsv2.h
#include “os/os_public.h”#include “ddsc/dds_export.h #include “ddsc/dds_public_stream.h’#include
“ddsc/dds_public_impl.h"#include “ddsc/dds_public_alloc.h”#include “ddsc/dds_public_time.h #include
“ddsc/dds_public_qos.h’#include “ddsc/dds_public_errorh”#include “ddsc/dds_public_status.h”#include
“ddsc/dds_public_listener.h”#include “ddsc/dds_public_log.h” C DDS header.

Communication Status definitions

DDS_INCONSISTENT TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_ DEADLINE_MISSED_STATUS
DDS_OFFERED_ INCOMPATIBLE QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS STATUS

DDS_DATA_ AVAILABLE_ STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_ STATUS
DDS_PUBLICATION_ MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS

Typedefs

typedef enum dds_sample_state dds_sample_state_t
defines the state for a data value

1. DDS_SST_READ - DataReader has already accessed the sample by read
2. DDS_SST_NOT_READ - DataReader has not accessed that sample before
dds_sample_state_t

typedef enumdds_view_state dds_view_state_t
defines the view state of an instance relative to the samples

1. DDS_VST_NEW - DataReader is accessing the sample for the first time when the instance is alive
2. DDS_VST_OLD - DataReader has accessed the sample before
dds_view_state_t

typedef enum dds_instance_state dds_instance_state_t
defines the state of the instance

1. DDS_IST_ALIVE - Samples received for the instance from the live data writers
2. DDS_IST_NOT_ALIVE_DISPOSED - Instance was explicitly disposed by the data writer

3. DDS_IST_NOT_ALIVE_NO_WRITERS - Instance has been declared as not alive by data reader as
there are no live data writers writing that instance

119

VortexDDS, Release 0.1.0

dds_instance_state_t

typedef struct dds_sample_info dds_sample_info_t

Structure dds_sample_info_t - contains information about the associated data value
1. sample_state - dds_sample_state_t
2. view_state - dds_view_state_t
3. instance_state - dds_instance_state_t
4. valid_data - indicates whether there is a data associated with a sample
* true, indicates the data is valid
 false, indicates the data is invalid, no data to read
. source_timestamp - timestamp of a data instance when it is written
. instance_handle - handle to the data instance

. publication_handle - handle to the publisher

(eI BN NNV |

. disposed_generation_count - count of instance state change from NOT_ALIVE_DISPOSED to
ALIVE

9. no_writers_generation_count - count of instance state change from NOT_ALIVE_NO_WRITERS to
ALIVE

10. sample_rank - indicates the number of samples of the same instance that follow the current one in the
collection

11. generation_rank - difference in generations between the sample and most recent sample of the same
instance that appears in the returned collection

12. absolute_generation_rank - difference in generations between the sample and most recent sample of
the same instance when read/take was called

13. reception_timestamp - timestamp of a data instance when it is added to a read queue

typedef bool (*dds_querycondition_filter_f£n) (const void *sample)

Creates a queryondition associated to the given reader.

The queryondition allows specifying which samples are of interest in a data reader’s history, by means
of a mask and a filter. The mask is or’d with the flags that are dds_sample_state_t, dds_view_state_t and
dds_instance_state_t.

TODO: Explain the filter (aka expression & parameters) of the (to be implemented) new querycondition
implementation.

Based on the mask value set and data that matches the filter, the querycondition gets triggered when data
is available on the reader.

Waitsets allow waiting for an event on some of any set of entities. This means that the querycondition can
be used to wake up a waitset when data is in the reader history with states that matches the given mask and
filter.

TODO: Update parameters when new querycondition is introduced.

Note The parent reader and every of its associated conditions (whether they are readconditions or
queryconditions) share the same resources. This means that one of these entities reads or takes data,
the states of the data will change for other entities automatically. For instance, if one reads a sample,
then the sample state will become ‘read’ for all associated reader/conditions. Or if one takes a sample,
then it’s not available to any other associated reader/condition.

120

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return >0 - Success (valid condition).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader: Reader to associate the condition to.
* mask: Interest (dds_sample_state_tldds_view_state_tldds_instance_state_t).
e filter: Callback that the application can use to filter specific samples.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
typedef void *dds_attach_t
Waitset attachment argument.

Every entity that is attached to the waitset can be accompanied by such an attachment argument. When
the waitset wait is unblocked because of an entity that triggered, then the returning array will be populated
with these attachment arguments that are related to the triggered entity.

Enums

enum dds_sample_state
defines the state for a data value

1. DDS_SST_READ - DataReader has already accessed the sample by read
2. DDS_SST_NOT_READ - DataReader has not accessed that sample before
dds_sample_state_t
Values:

DDS_SST_READ = lu
DataReader has already accessed the sample by read

DDS_SST_NOT_READ =2u
DataReader has not accessed the sample before

DDS_SST_READ = lu
DDS_SST_NOT_READ =2u

enum dds_view_state
defines the view state of an instance relative to the samples

1. DDS_VST_NEW - DataReader is accessing the sample for the first time when the instance is alive
2. DDS_VST_OLD - DataReader has accessed the sample before

dds_view_state t

Values:

DDS_VST_NEW =4u
DataReader is accessing the sample for the first time when the instance is alive

121

VortexDDS, Release 0.1.0

DDS_VST_OLD = 8u
DataReader accessed the sample before

DDS_VST_NEW =4u
DDS_VST_OLD = 8u

enum dds_instance_state
defines the state of the instance

1. DDS_IST_ALIVE - Samples received for the instance from the live data writers
2. DDS_IST_NOT_ALIVE_DISPOSED - Instance was explicitly disposed by the data writer

3. DDS_IST_NOT_ALIVE_NO_WRITERS - Instance has been declared as not alive by data reader as
there are no live data writers writing that instance

dds_instance_state_t
Values:

DDS_IST ALIVE = 16u
Samples received for the instance from the live data writers

DDS_IST NOT ALIVE_DISPOSED = 32u
Instance was explicitly disposed by the data writer

DDS_IST_NOT_ALIVE_NO_WRITERS = 64u
Instance has been declared as not alive by data reader as there are no live data writers writing that
instance

DDS_IST ALIVE = l6u
DDS_IST NOT_ALIVE_DISPOSED = 32u
DDS_IST NOT ALIVE_NO_ WRITERS = 64u

Functions

typedef _Return_type_success_ (return >= 0)
typedef _Return_type success_ (return, 0)

DDS_EXPORT dds_domainid t dds_get_default_domainid(void)
Description : Returns the default DDS domain id. This can be configured in xml or set as an evironment
variable (VORTEX_DOMAIN).

Arguments :
1. None
2. Returns the default domain id

_Pre_satisfies_(entity &0x7F000000)
Enable entity.

Get the domain id to which this entity is attached.
Get entity children.

Get entity participant.

Get entity parent.

Set entity listeners.

122

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Get entity listeners.
Set entity QoS policies.
Get entity QoS policies.
Delete given entity.

This operation enables the dds_entity_t. Created dds_entity_t objects can start in either an enabled or
disabled state. This is controlled by the value of the entityfactory policy on the corresponding parent
entity for the given entity. Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet activated, so it is still
possible to change their immutable QoS settings. However, once activated the immutable QoS settings can
no longer be changed. Creating disabled entities can make sense when the creator of the DDS_Entity does
not yet know which QoS settings to apply, thus allowing another piece of code to set the QoS later on.

Note Delayed entity enabling is not supported yet (CHAM-96).

The default setting of DDS_EntityFactoryQosPolicy is such that, by default, entities are created in an
enabled state so that it is not necessary to explicitly call dds_enable on newly-created entities.

The dds_enable operation produces the same results no matter how many times it is performed. Calling
dds_enable on an already enabled DDS_Entity returns DDS_RETCODE_OK and has no effect.

If an Entity has not yet been enabled, the only operations that can be invoked on it are: the ones to set,
get or copy the QosPolicy settings, the ones that set (or get) the Listener, the ones that get the Status
and the dds_get_status_changes operation (although the status of a disabled entity never changes). Other
operations will return the error DDS_RETCODE_NOT_ENABLED.

Entities created with a parent that is disabled, are created disabled regardless of the setting of the entity-
factory policy.

Calling dds_enable on an Entity whose parent is not enabled will fail and return
DDS_RETCODE_PRECONDITION_NOT_MET.

If the entityfactory policy has autoenable_created_entities set to TRUE, the dds_enable operation on the
parent will automatically enable all child entities created with the parent.

The Listeners associated with an Entity are not called until the Entity is enabled. Conditions associated
with an Entity that is not enabled are “inactive”, that is, have a trigger_value which is FALSE.

This operation will delete the given entity. It will also automatically delete all its children, childrens’
children, etc entities.

Return O - Success (DDS_RETCODE_OK).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* e: The entity to enable.
Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The parent of the given Entity is not enabled.

123

VortexDDS, Release 0.1.0

TODO: Link to generic dds entity relations documentation.

Description : Read the status(es) set for the entity based on the enabled status and mask set. This operation
does not clear the read status(es).

Return O - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its parent.
Return Value
* DDS_RETCODE_ERROR: The entity and its children (recursive are deleted).
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Arguments :
1. e Entity on which the status has to be read
2. status Returns the status set on the entity, based on the enabled status
3. mask Filter the status condition to be read (can be NULL)
4. Returns 0 on success, or a non-zero error value if the mask does not correspond to the entity

Description : Read the status(es) set for the entity based on the enabled status and mask set. This operation
clears the status set after reading.

Arguments :

1. e Entity on which the status has to be read

2. status Returns the status set on the entity, based on the enabled status

3. mask Filter the status condition to be read (can be NULL)

4. Returns 0 on success, or a non-zero error value if the mask does not correspond to the entity
Description : Returns the status changes since they were last read.
Arguments :

1. e Entity on which the statuses are read

2. Returns the curent set of triggered statuses.

Description : This operation returns the status enabled on the entity
Arguments :

1. e Entity to get the status

2. Returns the status that are enabled for the entity
Description : This operation enables the status(es) based on the mask set
Arguments :

1. e Entity to enable the status

2. mask Status value that indicates the status to be enabled

124

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

3. Returns 0 on success, or a non-zero error value indicating failure if the mask does not correspond to
the entity.

This operation allows access to the existing set of QoS policies for the entity.
TODO: Link to generic QoS information documentation.

This operation replaces the existing set of Qos Policy settings for an entity. The parameter qos must contain
the struct with the QosPolicy settings which is checked for self-consistency.

Return O - Success (DDS_RETCODE_OK).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters

* e: Entity on which to get qos

* gos: Pointer to the qos structure that returns the set policies
Return Value

* DDS_RETCODE_OK: The existing set of QoS policy values applied to the entity has successfully
been copied into the specified qos parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The qos parameter is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

The set of QosPolicy settings specified by the qos parameter are applied on top of the existing QoS, re-
placing the values of any policies previously set (provided, the operation returned DDS_RETCODE_OK).

Not all policies are changeable when the entity is enabled.
TODO: Link to generic QoS information documentation.
This operation allows access to the existing listeners attached to the entity.
Note Currently only Latency Budget and Ownership Strength are changeable QoS that can be set.
Return 0 - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* e: Entity from which to get qos
* gos: Pointer to the qos structure that provides the policies
Return Value
* DDS_RETCODE_OK: The new QoS policies are set.
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The qos parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_IMMUTABLE_POLICY: The entity is enabled and one or more of the policies
of the QoS are immutable.

125

VortexDDS, Release 0.1.0

* DDS_RETCODE_INCONSISTENT_POLICY: A few policies within the QoS are not consistent
with each other.

TODO: Link to (generic) Listener and status information.

This operation attaches a dds_listener_t to the dds_entity_t. Only one Listener can be attached to each
Entity. If a Listener was already attached, this operation will replace it with the new one. In other words,
all related callbacks are replaced (possibly with NULL).

Return 0 - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* e: Entity on which to get the listeners
* listener: Pointer to the listener structure that returns the set of listener callbacks.
Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The listener parameter is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When listener parameter is NULL, all listener callbacks that were possibly set on the Entity will be re-
moved.

TODO: Link to (generic) Listener and status information.
Note Not all listener callbacks are related to all entities.

For each communication status, the StatusChangedFlag flag is initially set to FALSE. It becomes TRUE
whenever that plain communication status changes. For each plain communication status activated in the
mask, the associated Listener callback is invoked and the communication status is reset to FALSE, as the
listener implicitly accesses the status which is passed as a parameter to that operation. The status is reset
prior to calling the listener, so if the application calls the get_<status_name> from inside the listener it will
see the status already reset.

In case a related callback within the Listener is not set, the Listener of the Parent entity is called recursively,
until a Listener with the appropriate callback set has been found and called. This allows the application to
set (for instance) a default behaviour in the Listener of the containing Publisher and a DataWriter specific
behaviour when needed. In case the callback is not set in the Publishers’ Listener either, the communication
status will be propagated to the Listener of the DomainParticipant of the containing DomainParticipant. In
case the callback is not set in the DomainParticipants’ Listener either, the Communication Status flag will
be set, resulting in a possible WaitSet trigger.

This operation returns the parent to which the given entity belongs. For instance, it will return the Partici-
pant that was used when creating a Publisher (when that Publisher was provided here).

Return O - Success (DDS_RETCODE_OK).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

 e: Entity on which to get the listeners

126

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* listener: Pointer to the listener structure that contains the set of listener callbacks (maybe
NULL).

Return Value

* DDS_RETCODE_OK: The listeners of to the entity have been successfully been copied into the
specified listener parameter.

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

TODO: Link to generic dds entity relations documentation.

This operation returns the participant to which the given entity belongs. For instance, it will return the Par-
ticipant that was used when creating a Publisher that was used to create a DataWriter (when that DataWriter
was provided here).

Return >0 - Success (valid entity handle).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its parent.
Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
TODO: Link to generic dds entity relations documentation.

This operation returns the children that the entity contains. For instance, it will return all the Topics,
Publishers and Subscribers of the Participant that was used to create those entities (when that Participant
is provided here).

Return >0 - Success (valid entity handle).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its participant.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This functions takes a pre-allocated list to put the children in and will return the number of found children.
It is possible that the given size of the list is not the same as the number of found children. If less children
are found, then the last few entries in the list are untouched. When more children are found, then only
‘size’ number of entries are inserted into the list, but still complete count of the found children is returned.
Which children are returned in the latter case is undefined.

When supplying NULL as list and O as size, you can use this to acquire the number of children without
having to pre-allocate a list.

TODO: Link to generic dds entity relations documentation.

127

VortexDDS, Release 0.1.0

When creating a participant entity, it is attached to a certain domain. All the children (like Publishers) and
childrens’ children (like DataReaders), etc are also attached to that domain.

Return >=0 - Success (number of found children, can be larger than ‘size’).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its children.
* children: Pre-allocated array to contain the found children.
* size: Size of the pre-allocated children’s list.
Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The children parameter is NULL, while a size is provided.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
This function will return the original domain ID when called on any of the entities within that hierarchy.
Description : Checks whether the entity has one of its enabled statuses triggered.
Return O - Success (DDS_RETCODE_OK).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its children.
* id: Pointer to put the domain ID in.
Return Value
e DDS_RETCODE_ OK: Domain ID was returned.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The id parameter is NULL.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
Arguments :

1. e Entity for which to check for triggered status

_Pre_satisfies (((writer & (0x7F000000))==DDS_KIND WRITER))

Get entity publisher.

This operation returns the publisher to which the given entity belongs. For instance, it will return the
Publisher that was used when creating a DataWriter (when that DataWriter was provided here).

TODO: Link to generic dds entity relations documentation.

Return >0 - Success (valid entity handle).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* entity: Entity from which to get its publisher.

128

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_(((entity & (0x7F000000))==DDS_KIND_READER) | | ((entity & (0x7F000000))==DD
Get entity subscriber.

This operation returns the subscriber to which the given entity belongs. For instance, it will return the
Subscriber that was used when creating a DataReader (when that DataReader was provided here).

TODO: Link to generic dds entity relations documentation.

Return >0 - Success (valid entity handle).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its subscriber.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_ (((condition & (0x7F000000))==DDS_KIND_ COND_READ) | | ((condition & (0x7F000
Get entity datareader.

Get the mask of a condition.

This operation returns the datareader to which the given entity belongs. For instance, it will return the
DataReader that was used when creating a ReadCondition (when that ReadCondition was provided here).

TODO: Link to generic dds entity relations documentation.
This operation returns the mask that was used to create the given condition.
Return >0 - Success (valid entity handle).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* entity: Entity from which to get its datareader.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

Return O - Success (given mask is set).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* condition: Read or Query condition that has a mask.

Return Value

129

VortexDDS, Release 0.1.0

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The mask arg is NULL.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_EXPORT _Must_inspect_result_ dds_entity_t dds_create_participant (_In_ const dds_do
Creates a new instance of a DDS participant in a domain.

If domain is set (not DDS_DOMAIN_DEFAULT) then it must match if the domain has also been config-
ured or an error status will be returned. Currently only a single domain can be configured by setting the
environment variable VORTEX_DOMAIN, if this is not set the the default domain is 0. Valid values for
domain id are between 0 and 230.
Return >0 - Success (valid handle of a participant entity).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* domain: - The domain in which to create the participant (can be DDS_DOMAIN_DEFAULT)
* gos: - The QoS to set on the new participant (can be NULL)
* listener: - Any listener functions associated with the new participant (can be NULL)
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.

DDS_EXPORT _Check_return_ dds_return_t dds_lookup_participant (_In_ dds_domainid_t doma
Get participants of a domain.

This operation acquires the participants created on a domain and returns the number of found participants.
This function takes a domain id with the size of pre-allocated participant’s list in and will return the number
of found participants. It is possible that the given size of the list is not the same as the number of found
participants. If less participants are found, then the last few entries in an array stay untouched. If more
participants are found and the array is too small, then the participants returned are undefined.
Return >=0 - Success (number of found participants).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters

* domain_id: The domain id

* participants: The participant for domain

* size: Size of the pre-allocated participant’s list.
Return Value

* DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The participant parameter is NULL, while a size is pro-
vided.

_Pre_satisfies_ ((participant & (0x7F000000)) = =DDS_KIND_PARTICIPANT)
Creates a new instance of a DDS subscriber.

Create a waitset and allocate the resources required.

Creates a new instance of a DDS publisher.

130 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Description : Creates a new DDS topic. The type name for the topic is taken from the generated descriptor.
Topic matching is done on a combination of topic name and type name.

Arguments :
1. pp The participant on which the topic is being created
2. descriptor The IDL generated topic descriptor
3. name The name of the created topic
4. gos The QoS to set on the new topic (can be NULL)
5. listener Any listener functions associated with the new topic (can be NULL)
6. Returns a status, 0 on success or non-zero value to indicate an error

Description : Finds a named topic. Returns NULL if does not exist. The returned topic should be released
with dds_delete.

Arguments :
1. pp The participant on which to find the topic
2. name The name of the topic to find
3. Returns a topic, NULL if could not be found or error

A WaitSet object allows an application to wait until one or more of the conditions of the attached entities
evaluates to TRUE or until the timeout expires.

Return >0 - Success (valid handle of a subscriber entity).
Return <0 - Failure (use dds_err_nr() to get error value).
Return >0 - Success (valid handle of a publisher entity).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* participant: The participant on which the subscriber is being created
¢ gos: The QoS to set on the new subscriber (can be NULL)
* listener: Any listener functions associated with the new subscriber (can be NULL)
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.
DDS_RETCODE_BAD_PARAMETER One of the parameters is invalid

Parameters
* participant: The participant to create a publisher for
* gos: The QoS to set on the new publisher (can be NULL)

* listener: Any listener functions associated with the new publisher (can be NULL)

Return >0 - Success (valid waitset).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* participant: Domain participant which the WaitSet contains.

Return Value

131

VortexDDS, Release 0.1.0

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

_Pre_satisfies_((topic & (0x7F000000)) = =DDS_KIND_TOPIC)
Description : Returns a topic name.

Arguments :

1. topic The topic

2. Returns The topic name or NULL to indicate an error
Description : Returns a topic type name.
Arguments :

1. topic The topic

2. Returns The topic type name or NULL to indicate an error

_Out_writes_z_ (size)

_Pre_satisfies_ ((publisher & (0x7F000000)) = =DDS_KIND_ PUBLISHER)
Suspends the publications of the Publisher.

Resumes the publications of the Publisher.

This operation is a hint to the Service so it can optimize its performance by e.g., collecting modifications
to DDS writers and then batching them. The Service is not required to use the hint.

Every invocation of this operation must be matched by a corresponding call to This operation is a hint
to the Service to indicate that the application has completed changes initiated by a previous The call to
resume_publications must match a previous call to

See dds_resume indicating that the set of modifications has completed.
Return >0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
See suspend. The Service is not required to use the hint.
See suspend_publications.
Return >0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
See dds_suspend.
Parameters
* publisher: The publisher for which all publications will be suspended
Return Value
* DDS_RETCODE_OK: Publications suspended successfully.
* DDS_RETCODE_BAD_PARAMETER: The pub parameter is not a valid publisher.
* DDS_RETCODE_UNSUPPORTED: Operation is not supported
Parameters
* publisher: The publisher for which all publications will be resumed

Return Value

132 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_OK: Publications resumed successfully.
* DDS_RETCODE_BRAD_PARAMETER: The pub parameter is not a valid publisher.
* DDS_RETCODE_PRECONDITION_NOT_MET: No previous matching
Return Value
* DDS_RETCODE_UNSUPPORTED: Operation is not supported.

_Pre_satisfies_(((publisher_or_ writer & (0x7F000000))==DDS_KIND_ WRITER) | | ((publisher_or
Waits at most for the duration timeout for acks for data in the publisher or writer.

This operation blocks the calling thread until either all data written by the publisher or writer is acknowl-
edged by all matched reliable reader entities, or else the duration specified by the timeout parameter
elapses, whichever happens first.
Return >0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* pub_or_w: The publisher or writer whose acknowledgements must be waited for.
Return Value
* DDS_RETCODE_OK: All acknowledgements successfully received with the timeout.
* DDS_RETCODE_BAD_PARAMETER: The pub_or_w parameter is not a valid publisher or writer.

* DDS_RETCODE_TIMEOUT: Timeout expired before all acknowledgements from reliable reader
entities were received.

* DDS_RETCODE_UNSUPPORTED: Operation is not supported.
_Pre_satisfies_(((participant_or_subscriber & (0x7F000000))==DDS_KIND_SUBSCRIBER) | | ((pa
Creates a new instance of a DDS reader.
Return >0 - Success (valid handle of a reader entity)
Return <0 - Failure (use dds_err_nr() to get error value)
Parameters

* participant_or_subscriber: The participant or subscriber on which the reader is being
created

* topic: The topic to read
* gos: The QoS to set on the new reader (can be NULL)
* listener: Any listener functions associated with the new reader (can be NULL)

_Pre_satisfies_((reader & (0x7F000000)) = =DDS_KIND_ READER)
Creates a readcondition associated to the given reader.

Description : The operation blocks the calling thread until either all “historical” data is received, or else
the duration specified by the max_wait parameter elapses, whichever happens first. A return value of 0
indicates that all the “historical” data was received; a return value of TIMEOUT indicates that max_wait
elapsed before all the data was received.

Arguments :
1. reader The reader on which to wait for historical data

2. max_wait How long to wait for historical data before time out

133

VortexDDS, Release 0.1.0

3. Returns a status, 0 on success, TIMEOUT on timeout or a negative value to indicate error

The readcondition allows specifying which samples are of interest in a data reader’s history, by
means of a mask. The mask is or’d with the flags that are dds_sample_state_t, dds_view_state_t and
dds_instance_state_t.

Based on the mask value set, the readcondition gets triggered when data is available on the reader.
Waitsets allow waiting for an event on some of any set of entities. This means that the readcondition can

be used to wake up a waitset when data is in the reader history with states that matches the given mask.

Note The parent reader and every of its associated conditions (whether they are readconditions or
queryconditions) share the same resources. This means that one of these entities reads or takes data,
the states of the data will change for other entities automatically. For instance, if one reads a sample,
then the sample state will become ‘read’ for all associated reader/conditions. Or if one takes a sample,
then it’s not available to any other associated reader/condition.

Return >0 - Success (valid condition).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader: Reader to associate the condition to.
* mask: Interest (dds_sample_state_tldds_view_state_tldds_instance_state_t).
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
_Pre_satisfies_(((participant_or_ publisher & (0x7F000000))==DDS_KIND_PUBLISHER) | | ((part
Creates a new instance of a DDS writer.
Return >0 - Success (valid handle of a writer entity)
Return <0 - Failure (use dds_err_nr() to get error value)
Parameters

* participant_or_publisher: The participant or publisher on which the writer is being
created

* topic: The topic to write
* gos: The QoS to set on the new writer (can be NULL)
* listener: Any listener functions associated with the new writer (can be NULL)

_Pre_satisfies_((writer & (0x7F000000)) = =DDS_KIND_ WRITER)
This operation modifies and disposes a data instance.

Write the value of a data instance along with the source timestamp passed.
Write a CDR serialized value of a data instance.

Write the value of a data instance.

This operation disposes an instance, identified by the instance handle.
This operation disposes an instance, identified by the data sample.

Description : Registers an instance with a key value to the data writer

134 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Arguments :
1. wr The writer to which instance has be associated
2. data Instance with the key value

3. Returns an instance handle that could be used for successive write & dispose operations or NULL, if
handle is not allocated

Description : Unregisters an instance with a key value from the data writer. Instance can be identified
either from data sample or from instance handle (at least one must be provided).

Arguments :
1. wr The writer to which instance is associated
2. data Instance with the key value (can be NULL if handle set)
3. handle Instance handle (can be DDS_HANDLE_NIL if data set)
4. Returns 0 on success, or non-zero value to indicate an error

Note : If an unregistered key ID is passed as instance data, an error is logged and not flagged as return
value

Description : Unregisters an instance with a key value from the data writer. Instance can be identified
either from data sample or from instance handle (at least one must be provided).

Arguments :
1. wr The writer to which instance is associated
2. data Instance with the key value (can be NULL if handle set)
3. handle Instance handle (can be DDS_HANDLE_NIL if data set)
4. timestamp used at registration.
5. Returns O on success, or non-zero value to indicate an error

Note : If an unregistered key ID is passed as instance data, an error is logged and not flagged as return
value

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the
writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time
attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

Description : This operation modifies and disposes a data instance with a specific timestamp.
Return O - Success.
Return <O - Failure (use dds_err_nr() to get error value).

Parameters

135

VortexDDS, Release 0.1.0

writer: The writer to dispose the data instance from.

data: The data to be written and disposed.

Return Value

DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation performs the same functions as dds_writedispose except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return

Return

0 - Success.

<0 - Failure (use dds_err_nr() to get error value).

Parameters

writer: The writer to dispose the data instance from.
data: The data to be written and disposed.

timestamp: The timestamp used as source timestamp.

Return Value

DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
DDS_RETCODE_ERROR: An internal error has occurred.

DDS_RETCODE_BAD_PARAMETER: At least one of the arguments is invalid.
DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

If the history QoS policy is set to DDS_HISTORY_KEEP_ALL, the dds_writedispose operation on the
writer may block if the modification would cause data to be lost because one of the limits, specified in
the resource_limits QoS policy, to be exceeded. In case the synchronous attribute value of the reliabil-
ity Qos policy is set to true for communicating writers and readers then the writer will wait until all
synchronous readers have acknowledged the data. Under these circumstances, the max_blocking_time

136

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

attribute of the reliability QoS policy configures the maximum time the dds_writedispose operation may
block. If max_blocking_time elapses before the writer is able to store the modification without exceeding
the limits and all expected acknowledgements are received, the dds_writedispose operation will fail and
returns DDS_RETCODE_TIMEOUT.

Description : This operation disposes an instance with a specific timestamp, identified by the data sample.
Return 0 - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

This operation performs the same functions as dds_dispose except that the application provides the value
for the source_timestamp that is made available to connected reader objects. This timestamp is important
for the interpretation of the destination_order QoS policy.

This operation requests the Data Distribution Service to modify the instance and mark it for deletion.
Copies of the instance and its corresponding samples, which are stored in every connected reader and,
dependent on the QoS policy settings (also in the Transient and Persistent stores) will be modified and
marked for deletion by setting their dds_instance_state_t to DDS_IST_NOT_ALIVE_DISPOSED.

Return O - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* data: The data sample that identifies the instance to be disposed.
* timestamp: The timestamp used as source timestamp.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

137

VortexDDS, Release 0.1.0

* DDS_RETCODE_TIMEOUT: Either the current action overflowed the available resources as spec-
ified by the combination of the reliability QoS policy, history QoS policy and resource_limits
QoS policy, or the current action was waiting for data delivery acknowledgement by syn-
chronous readers. This caused blocking of this operation, which could not be resolved before
max_blocking_time of the reliability QoS policy elapsed.

The given instance handle must correspond to the value that was returned by either the
dds_register_instance operation, dds_register_instance_ts or dds_instance_lookup. If there is no corre-
spondence, then the result of the operation is unspecified.

Description : This operation disposes an instance with a specific timestamp, identified by the instance
handle.

Return O - Success.
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* handle: The handle to identify an instance.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer.

This operation performs the same functions as dds_dispose_ih except that the application provides the
value for the source_timestamp that is made available to connected reader objects. This timestamp is
important for the interpretation of the destination_order QoS policy.

With this API, the value of the source timestamp is automatically made available to the data reader by the
service.

Return O - Success.
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* writer: The writer to dispose the data instance from.
* handle: The handle to identify an instance.
* timestamp: The timestamp used as source timestamp.
Return Value
* DDS_RETCODE_OK: The sample is written and the instance is marked for deletion.
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: At least one of the arguments is invalid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

138

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this writer.

Untyped API, which take serialized blobs now. Whether they remain exposed like this with X-types isn’t
entirely clear yet. TODO: make a decide about dds_takecdr

Return - dds_return_t indicating success or failure
Parameters
* writer: The writer entity

e data: Value to be written

Return - A dds_return_t indicating success or failure
Return - A dds_return_t indicating success or failure
Parameters

* writer: The writer entity

* cdr: CDR serialized value to be written

* size: Size (in bytes) of CDR encoded data to be written
Parameters

* writer: The writer entity

* data: Value to be written

* timestamp: Source timestamp

_In_reads_bytes_ (size) const

_Pre_satisfies_((waitset & (0x7F000000)) = =DDS_KIND_WAITSET)
Acquire previously attached entities.

This operation allows an application thread to wait for the a status change or other trigger on (one of) the
entities that are attached to the WaitSet.

Sets the trigger_value associated with a waitset.
This operation detaches an Entity to the WaitSet.
This operation attaches an Entity to the WaitSet.

This functions takes a pre-allocated list to put the entities in and will return the number of found entities. It
is possible that the given size of the list is not the same as the number of found entities. If less entities are
found, then the last few entries in the list are untouched. When more entities are found, then only ‘size’
number of entries are inserted into the list, but still the complete count of the found entities is returned.
Which entities are returned in the latter case is undefined.

This operation attaches an Entity to the WaitSet. The dds_waitset_wait() will block when none of the
attached entities are triggered. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

139

VortexDDS, Release 0.1.0

» ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return >=0 - Success (number of found children, can be larger than ‘size’).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* waitset: Waitset from which to get its attached entities.
* entities: Pre-allocated array to contain the found entities.
* size: Size of the pre-allocated entities’ list.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The entities parameter is NULL, while a size is provided.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
Multiple entities can be attached to a single waitset. A particular entity can be attached to multiple waitsets.
However, a particular entity can not be attached to a particular waitset multiple times.

When the waitset is attached to itself and the trigger value is set to ‘true’, then the waitset will wake up
just like with an other status change of the attached entities.

Return O - Success (entity attached).
Return <O - Failure (use dds_err_nr() to get error value).
Return O - Success (entity attached).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* waitset: The waitset to attach the given entity to.
* entity: The entity to attach.
* x: Blob that will be supplied when the waitset wait is triggerd by the given entity.
Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The entity was already attached.
Parameters
* waitset: The waitset to detach the given entity from.
* entity: The entity to detach.
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

140 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: The given waitset or entity are not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.

e DDS_RETCODE_PRECONDITION_NOT_MET: The entity is not attached.

This can be used to forcefully wake up a waitset, for instance when the application wants to shut down.
So, when the trigger value is true, the waitset will wake up or not wait at all.

The trigger value will remain true until the application sets it false again deliberately.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “reltime-
out” has elapsed. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

* ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return O - Success (entity attached).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* waitset: The waitset to set the trigger value on.
* trigger: The trigger value to set.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted

into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

141

VortexDDS, Release 0.1.0

The “dds_waitset_wait_until” operation is the same as the “dds_waitset_wait” except that it takes an ab-
solute timeout.

The “dds_waitset_wait” operation blocks until the some of the attached entities have triggered or “abstime-
out” has been reached. ‘Triggered’ (dds_triggered()) doesn’t mean the same for every entity:

» Reader/Writer/Publisher/Subscriber/Topic/Participant
— These are triggered when their status changed.
* WaitSet

— Triggered when trigger value was set to true by the application. It stays triggered until application
sets the trigger value to false (dds_waitset_set_trigger()). This can be used to wake up an waitset
for different reasons (f.i. termination) than the ‘normal’ status change (like new data).

» ReadCondition/QueryCondition

— Triggered when data is available on the related Reader that matches the Condition.

Return >0 - Success (number of entities triggered).
Return O - Time out (no entities were triggered).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.

* reltimeout: Relative timeout
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: The given waitset is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.
This functions takes a pre-allocated list to put the “xs” blobs in (that were provided during the attach of the
related entities) and will return the number of triggered entities. It is possible that the given size of the list
is not the same as the number of triggered entities. If less entities were triggered, then the last few entries
in the list are untouched. When more entities are triggered, then only ‘size’ number of entries are inserted

into the list, but still the complete count of the triggered entities is returned. Which “xs” blobs are returned
in the latter case is undefined.

In case of a time out, the return value is 0.
Deleting the waitset while the application is blocked results in an error code (i.e. < 0) returned by “wait”.
Multiple threads may block on a single waitset at the same time; the calls are entirely independent.

An empty waitset never triggers (i.e., dds_waitset_wait on an empty waitset is essentially equivalent to a
sleep).

The “dds_waitset_wait” operation is the same as the “dds_waitset_wait_until” except that it takes an rela-
tive timeout.

142

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

The “dds_waitset_wait” operation is the same as the “dds_wait” except that it takes an absolute timeout.

Return >0 - Success (number of entities triggered).
Return O - Time out (no entities were triggered).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters

* waitset: The waitset to set the trigger value on.

* xs: Pre-allocated list to store the ‘blobs’ that were provided during the attach of the triggered
entities.

* nxs: The size of the pre-allocated blobs list.
* abstimeout: Absolute timeout
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: The given waitset is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The waitset has already been deleted.

_Out_writes_to_ (size)
_Out_writes_to_ (nxs)

_Pre_satisfies_(((reader_or_condition & (0x7F000000))==DDS_KIND_ READER) | | ((reader_or_ co
Access and read the collection of data values (of same type) and sample info from the data reader, read-
condition or querycondition.

Return loaned samples to data-reader or condition associated with a data-reader.

Access loaned samples of data reader, readcondition or querycondition based on mask and scoped by the
given intance handle.

Take the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition based on mask and scoped by the given instance handle.

Access loaned samples of data reader, readcondition or querycondition, scoped by the given instance
handle.

Access the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition but scoped by the given instance handle.

Access loaned samples of data reader, readcondition or querycondition based on mask.

Take the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition based on mask.

Access loaned samples of data reader, readcondition or querycondition.

Access the collection of data values (of same type) and sample info from the data reader, readcondition or
querycondition.

Access and read loaned samples of data reader, readcondition or querycondition based on mask, scoped by
the provided instance handle.

Read the collection of data values and sample info from the data reader, readcondition or querycondition
based on mask and scoped by the provided instance handle.

143

VortexDDS, Release 0.1.0

Access and read loaned samples of data reader, readcondition or querycondition, scoped by the provided
instance handle.

Access and read the collection of data values (of same type) and sample info from the data reader, read-
condition or querycondition, coped by the provided instance handle.

Access and read loaned samples of data reader, readcondition or querycondition based on mask.

Read the collection of data values and sample info from the data reader, readcondition or querycondition
based on mask.

Access and read loaned samples of data reader, readcondition or querycondition.

Return value provides information about number of samples read, which will be <= maxs. Based on the
count, the buffer will contain data to be read only when valid_data bit in sample info structure is set. The
buffer required for data values, could be allocated explicitly or can use the memory from data reader to
prevent copy. In the latter case, buffer and sample_info should be returned back, once it is no longer
using the Data. Data values once read will remain in the buffer with the sample_state set to READ and
view_state set to NOT_NEW.

After dds_read_wl function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

144

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
When using a readcondition or querycondition, their masks are or’d with the given mask.
Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_read_mask_wI function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation implements the same functionality as dds_read, except that only data scoped to the provided
instance handle is read.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_read_wl, except that only data scoped to the
provided instance handle is read.

145

VortexDDS, Release 0.1.0

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).

Parameters

* reader_or_condition: Reader, readcondition or querycondition entity

* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value

* bufsz: The size of buffer provided

* maxs: Maximum number of samples to read

* handle: Instance handle related to the samples to read

Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).

Parameters

* reader_or_condition: Reader, readcondition or querycondition entity

* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value

* maxs: Maximum number of samples to read

* handle: Instance handle related to the samples to read

Return Value

* DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_read_mask_wl, except that only data scoped to
the provided instance handle is read.

Return >=0 - Success (number of samples read).

Return <0 - Failure (use dds_err_nr() to get error value).

146

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Parameters

* reader_or_condition: Reader, readcondition or querycondition entity

* buf: An array of pointers to samples into which data is read (pointers can be NULL)

* si: Pointer to an array of dds_sample_info_t returned for each data value

* bufsz: The size of buffer provided

* maxs: Maximum number of samples to read

* handle: Instance handle related to the samples to read

* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

Description : Access the collection of data values (of same type) and sample info from the data reader
based on the criteria specified in the read condition. Read condition must be attached to the data reader
before associating with data read. Return value provides information about number of samples read, which
will be <= maxs. Based on the count, the buffer will contain data to be read only when valid_data bit in
sample info structure is set. The buffer required for data values, could be allocated explicitly or can
use the memory from data reader to prevent copy. In the latter case, buffer and sample_info should be
returned back, once it is no longer using the Data. Data values once read will remain in the buffer with the
sample_state set to READ and view_state set to NOT_NEW.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

147

VortexDDS, Release 0.1.0

Arguments :

1.

rd Reader entity

. buf an array of pointers to samples into which data is read (pointers can be NULL)
. maxs maximum number of samples to read

2
3
4.
5
6

si pointer to an array of dds_sample_info_t returned for each data value

. cond read condition to filter the data samples based on the content

. Returns the number of samples read, 0 indicates no data to read. Data value once read is removed from

the Data Reader cannot to ‘read’ or ‘taken’ again. Return value provides information about number
of samples read, which will be <= maxs. Based on the count, the buffer will contain data to be read
only when valid_data bit in sample info structure is set. The buffer required for data values, could be
allocated explicitly or can use the memory from data reader to prevent copy. In the latter case, buffer
and sample_info should be returned back, once it is no longer using the Data.

After dds_take_wl1 function is being called and the data has been handled, dds_return_loan function must
be called to possibly free memory

Return >=0 - Success (number of samples read).

Return <0 - Failure (use dds_err_nr() to get error value).

Parameters

* reader_or_condition: Reader, readcondition or querycondition entity

* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value

* bufsz: The size of buffer provided

* maxs: Maximum number of samples to read

Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.

* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

When using a readcondition or querycondition, their masks are or’d with the given mask.

Return >=0 - Success (number of samples read).

Return <O - Failure (use dds_err_nr() to get error value).

Parameters

* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value

* maxs: Maximum number of samples to read

Return Value

e DDS_RETCODE_ERROR: An internal error has occurred.

* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.

148

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

After dds_take_mask_wl function is being called and the data has been handled, dds_return_loan function
must be called to possibly free memory

This operation mplements the same functionality as dds_take, except that only data scoped to the provided
instance handle is taken.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

This operation implements the same functionality as dds_take_wl, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
Return Value
* DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

149

VortexDDS, Release 0.1.0

This operation implements the same functionality as dds_take_mask, except that only data scoped to the
provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

This operation implements the same functionality as dds_take_mask_wl, except that only data scoped to
the provided instance handle is read.

Return >=0 - Success (number of samples read).
Return <0 - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* bufsz: The size of buffer provided
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BRAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.

* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.

150

Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

Used to release sample buffers returned by a read/take operation. When the application provides an empty
buffer, memory is allocated and managed by DDS. By calling dds_return_loan, the memory is released so
that the buffer can be reused during a successive read/take operation. When a condition is provided, the
reader to which the condition belongs is looked up.

Return >=0 - Success (number of samples read).
Return <O - Failure (use dds_err_nr() to get error value).
Parameters
* reader_or_condition: Reader, readcondition or querycondition entity
* buf: An array of pointers to samples into which data is read (pointers can be NULL)
* si: Pointer to an array of dds_sample_info_t returned for each data value
* maxs: Maximum number of samples to read
* handle: Instance handle related to the samples to read
* mask: Filter the data based on dds_sample_state_tldds_view_state_tldds_instance_state_t.
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
* DDS_RETCODE_BAD_PARAMETER: One of the given arguments is not valid.
* DDS_RETCODE_ILLEGAL_OPERATION: The operation is invoked on an inappropriate object.
* DDS_RETCODE_ALREADY_DELETED: The entity has already been deleted.
* DDS_RETCODE_PRECONDITION_NOT_MET: The instance handle has not been registered with
this reader.
Return A dds_return_t indicating success or failure
Parameters
* rd_or_cnd: Reader or condition that belongs to a reader
* buf: An array of (pointers to) samples
* bufsz: The number of (pointers to) samples stored in buf
DDS_EXPORT int dds_takecdr (dds_entity t reader_or condition, struct serdata ** buf, ui

DDS_EXPORT dds_return_t dds_take_next (_In_ dds_entity t reader_or condition, _Out_ voi
Description : This operation copies the next, non-previously accessed data value and corresponding sample
info and removes from the data reader.

Arguments :
1. rd Reader entity
2. buf an array of pointers to samples into which data is read (pointers can be NULL)
3. si pointer to dds_sample_info_t returned for a data value
4. Returns 1 on successful operation, else 0 if there is no data to be read.
DDS_EXPORT dds_return_t dds_take_next_wl(_In_ dds_entity t reader_or_ condition, _Out_

DDS_EXPORT dds_return_t dds_read next (_In_ dds_entity t reader_or condition, _Out_ voi
Description : This operation copies the next, non-previously accessed data value and corresponding sample
info.

151

VortexDDS, Release 0.1.0

Arguments :
1. rd Reader entity
2. buf an array of pointers to samples into which data is read (pointers can be NULL)
3. si pointer to dds_sample_info_t returned for a data value
4. Returns 1 on successful operation, else 0 if there is no data to be read.
DDS_EXPORT dds_return_t dds_read next_wl(_In_dds_entity t reader or_ condition,

_Inout_updates_ (bufsz)

DDS_EXPORT dds_return_t dds_lookup_instance(_In_ dds_entity t entity, _Out_ dds_instan

Description : This operation takes a sample and returns an instance handle to be used for subsequent
operations.

Arguments :
1. e Reader or Writer entity
2. data sample with a key fields set
3. Returns instance handle or DDS_HANDLE_NIL if instance could not be found from key

DDS_EXPORT dds_return_t dds_instance_get_key(_In_dds_entity t entity, _In_dds_instan

Description : This operation takes an instance handle and return a key-value corresponding to it.
Arguments :

1. e Reader or Writer entity

2. inst Instance handle

3. data pointer to an instance, to which the key ID corresponding to the instance handle will be returned,
the sample in the instance should be ignored.

4. Returns 0 on successful operation, or a non-zero value to indicate an error if the instance passed
doesn’t have a key-value

_Pre_satisfies_(((entity & (0x7F000000))==DDS_KIND_READER) | | ((entity & (0x7F000000))==DD

Begin coherent publishing or begin accessing a coherent set in a subscriber.
End coherent publishing or end accessing a coherent set in a subscriber.

Invoking on a Writer or Reader behaves as if dds_begin_coherent was invoked on its parent Publisher or
Subscriber respectively.

Invoking on a Writer or Reader behaves as if dds_end_coherent was invoked on its parent Publisher or
Subscriber respectively.

Return - A dds_return_t indicating success or failure
Parameters
* e: - The entity that is prepared for coherent access
Return Value
e DDS_RETCODE_ERROR: An internal error has occurred.
DDS_RETCODE_BAD_PARAMETER The provided entity is invalid or not supported
Return - A dds_return_t indicating success or failure
Parameters

* e: - The entity on which coherent access is finished

152

Chapter 6. Vortex DDS C API Reference

Out

VortexDDS, Release 0.1.0

Return Value

* DDS_RETCODE_OK: The operation was successful DDS_RETCODE_BAD_PARAMETER The
provided entity is invalid or not supported

_Pre_satisfies_((subscriber & (0x7F000000)) = =DDS_KIND_SUBSCRIBER)
Trigger DATA_AVAILABLE event on contained readers.

The DATA_AVAILABLE event is broadcast to all readers owned by this subscriber that currently have
new data available. Any on_data_available listener callbacks attached to respective readers are invoked.

DDS_RETCODE_OK The operation was successful DDS_RETCODE_BAD_PARAMETER The pro-
vided subscriber is invalid

Return - A dds_return_t indicating success or failure
Parameters
* sub: A subscriber

DDS_EXPORT dds_entity_t dds_get_domain(_In_ dds_domainid_t id)
Description : Resolves the domain-entity identified by id if it exists

Arguments :
1. id

DDS_EXPORT dds_return_t dds_get_matched(_In_ dds_entity t wr_or_r, _Out_writes_to_ (nof
Description : Retrieves the matched publications (for a given Reader) or subscriptions (for a given Writer)

Arguments :
1. wr_or_r Writer or Reader
2. handles Array of size nofHandles
3. nofHandles Number of elements that can be written to in handles

4. Returns the number of available matched publications or subscriptions. If return > nofHandles the
resulting set is truncated. Handles are only initialized up to min(return, nofHandles).

DDS_EXPORT dds_return_t dds_assert_liveliness(_In_ dds_entity t e)
Description : Asserts the liveliness of the entity

Arguments :
1. e Entity

DDS_EXPORT dds_return_t dds_contains(_In_ dds_entity t e, _In_ dds_entity t c)
Description : Checks whether entity c is contained in entity e

Containment is defined as follows: TODO

Arguments :
1. e Entity for which has to be determined whether c is contained within it
2. c Entity to check for being contained in e

DDS_EXPORT dds_time_t dds_time (void)
Description : Returns the current wall-clock as used for timestamps

DDS_EXPORT dds_entity_t dds_create_contentfilteredtopic(_In_ dds_entity t pp, _In_z_c

DDS_EXPORT dds_entity t dds_lookup_topic(_In_ dds_entity t pp, _In_z_ const char * nam
Description : Tries to find the topic with the supplied name.

Arguments :

153

VortexDDS, Release 0.1.0

1. pp Participant
2. name Topic-name to look for

DDS_EXPORT dds_return_t dds_ignore(_In_ dds_entity t pp, _In_ dds_instance_handle_t ha;
Description : Ignore the entity described by handle.

Arguments :
1. pp Participant
2. handle Instance-handle of entity to be ignored.

DDS_EXPORT dds_entity_ t dds_get_related_topic(_In_ dds_entity_t cft)
Description : Retrieve the topic on which the content-filtered-topic is based

TODO: Refactor CFT
Arguments :
1. cft ContentFilteredTopic

DDS_EXPORT dds_entity_t dds_get_query(_In_ dds_entity t top_mt_gc)
Description : Retrieve the query underlying the entity

Arguments :
1. top_mt_qc Topic, MultiTopic, QueryConditon

DDS_EXPORT dds_return_t dds_get_query parameters(_In_ dds_entity t e, _Out_writes_to_ (;
Description : Retrieve the query-parameters

Arguments :
1. top_mt_qc Topic, MultiTopic, QueryConditon

DDS_EXPORT dds_return_t dds_set_query parameters(_In_ dds_entity t e, _In_reads_opt_z_
Description : Set the query-parameters

Arguments :
1. top_mt_qc Topic, MultiTopic, QueryConditon

DDS_EXPORT dds_entity_t dds_get_topic(_In_ dds_entity t e)

Variables

Out void _Out_ dds_sample_info_t _In_ uint32_t _In_dds_instance_handle_t _In_ uint3
Out dds_instance_handle_t* ihdl

Out uint32_t* status

_In_opt_ const dds_gos_tx*x gos

_In_opt_ const dds_gos_t _In_opt_ const dds_listener tx listener

_Out_opt_ dds_entity t*x children

_In size_t size

Out dds_domainid t* id

_In const dds_topic_descriptor_t* descriptor

In z const char* name

154 Chapter 6. Vortex DDS C API Reference

VortexDDS, Release 0.1.0

In

In

dds_duration_t timeout

dds_duration_t max_wait

Out void _Out_ dds_sample_info_t _In_ uint32_t _In_ dds_instance_handle_t handle

In
In
In
In
In
In
In
In

In

const voidx data

const void _In_ dds_time_t timestamp

uint32_t _In_ dds_querycondition_filter fn filter
dds_entity t entity

dds_entity t _In_ dds_attach_ t x

bool trigger

size_t nxs

size t _In_dds _duration_t reltimeout

size_ t _In_ dds_time_ t abstimeout

Out void** buf

Out void _Out_ dds_sample_info_t* si

In

size_t bufsz

Out void _Out_ dds_sample_info_t _In_ uint32_t maxs

dir /home/jenkins/workspace/BuildChameleonLinux64bit/cham/src/core

dir /home/jenkins/workspace/BuildChameleonLinux64bit/cham/src/core/ddsc/include/ddsc

dir /home/ jenkins/workspace/BuildChameleonLinux64bit/cham/src/core/ddsc

dir /home/jenkins/workspace/BuildChameleonLinux64bit/cham/src/core/ddsc/include

dir /home/jenkins/workspace/BuildChameleonLinux64bit/cham/src

155

VortexDDS, Release 0.1.0

156 Chapter 6. Vortex DDS C API Reference

CHAPTER /

Indices and tables

* genindex
* modindex

e search

157

Index

_In_reads_bytes_ (C++ function), 139

_Inout_updates_ (C++ function), 86, 152
_Out_writes_to_ (C++ function), 72, 143
_Out_writes_to_opt_ (C++ function), 72
_Out_writes_z_ (C++ function), 49, 132

cdr (C++ member), 88

dds_aligned_allocator (C++ class), 23
dds_aligned_allocator::alloc (C++ member), 23
dds_aligned_allocator::free (C++ member), 23
dds_aligned_allocator_t (C++ type), 89
DDS_ALIVE_INSTANCE_STATE (C macro), 92
dds_alloc_fn_t (C++ type), 89
dds_allocator (C++ class), 23
dds_allocator::free (C++ member), 23
dds_allocator::malloc (C++ member), 23
dds_allocator::realloc (C++ member), 23
dds_allocator_t (C++ type), 89
DDS_ANY_INSTANCE_STATE (C macro), 92
DDS_ANY_SAMPLE_STATE (C macro), 92
DDS_ANY_STATE (C macro), 92
DDS_ANY_VIEW_STATE (C macro), 92
dds_attach_t (C++ type), 30, 121
DDS_CHECK_EXIT (C macro), 90
DDS_CHECK_FAIL (C macro), 90
DDS_CHECK_REPORT (C macro), 90
DDS_DATA_AVAILABLE_STATUS (C macro), 29, 119
DDS_DATA_ON_READERS_STATUS (C macro), 29,
119
DDS_DEADLINE_QOS_POLICY_ID (C macro), 101
dds_destination_order_kind (C++ type), 103
dds_destination_order_kind_t (C++ type), 102

dds_domainid_t (C++ type), 94

dds_durability_kind (C++ type), 102

dds_durability_kind_t (C++ type), 102

DDS_DURABILITY_PERSISTENT (C++ class), 102

DDS_DURABILITY_QOS_POLICY_ID (C macro), 101

DDS_DURABILITY_TRANSIENT (C++ class), 102

DDS_DURABILITY_TRANSIENT_LOCAL (C++
class), 102

DDS_DURABILITY_VOLATILE (C++ class), 102

DDS_DURABILITYSERVICE_QOS_POLICY_ID (C
macro), 101

dds_duration_t (C++ type), 118

dds_entity_kind (C++ type), 94

DDS_ENTITY_KIND_MASK (C macro), 92

dds_entity_kind_t (C++ type), 94

DDS_ENTITY_NIL (C macro), 92

DDS_ENTITYFACTORY_QOS_POLICY_ID (C
macro), 101

DDS_ERR_CHECK (C macro), 91

dds_err_file_id (C macro), 91

DDS_ERR_FILE_ID_MASK (C macro), 91

dds_err_line (C macro), 91

DDS_ERR_LINE_MASK (C macro), 91

dds_err_nr (C macro), 91

DDS_ERR_NR_MASK (C macro), 91

DDS_FAIL (C macro), 91

dds_fail_fn (C++ type), 91

DDS_FREE_ALL (C++ class), 89

DDS_FREE_ALL_BIT (C macro), 89

DDS_FREE_CONTENTS (C++ class), 89

DDS_FREE_CONTENTS_BIT (C macro), 89

dds_free_fn_t (C++ type), 89

DDS_FREE_KEY (C++ class), 89

DDS_DESTINATIONORDER_BY_RECEPTION_TIMESBMPEREE KEY BIT (C macto), 89

(C++ class), 103

dds_free_op_t (C++ type), 89

(C++ class), 103
DDS_DESTINATIONORDER_QOS_POLICY_ID (C
macro), 101
DDS_DOMAIN_DEFAULT (C macro), 92

DDS_HANDLE_NIL (C macro), 92
DDS_HISTORY_KEEP_ALL (C++ class), 102
DDS_HISTORY_KEEP_LAST (C++ class), 102
dds_history_kind (C++ type), 102

158

VortexDDS, Release 0.1.0

dds_history_kind_t (C++ type), 102
DDS_HISTORY_QOS_POLICY_ID (C macro), 101
dds_history_qospolicy (C++ class), 23
dds_history_qospolicy::depth (C++ member), 23
dds_history_qospolicy::kind (C++ member), 23
dds_history_qospolicy_t (C++ type), 102
DDS_INCONSISTENT_TOPIC_STATUS (C macro),
29,119
dds_inconsistent_topic_status (C++ class), 23
dds_inconsistent_topic_status::total_count (C++ mem-
ber), 24
dds_inconsistent_topic_status::total_count_change (C++
member), 24
dds_inconsistent_topic_status_t (C++ type), 111
DDS_INFINITY (C macro), 118
dds_instance_handle_t (C++ type), 94
dds_instance_state (C++ type), 30, 122
dds_instance_state_t (C++ type), 30, 119
DDS_INT_TO_STRING (C macro), 91
DDS_INVALID_QOS_POLICY_ID (C macro), 101
DDS_IST_ALIVE (C++ class), 30, 31, 122
DDS_IST_NOT_ALIVE_DISPOSED (C++ class), 31,
122
DDS_IST_NOT_ALIVE_NO_WRITERS (C++ class),
31,122
dds_key_descriptor (C++ class), 24
dds_key_descriptor::m_index (C++ member), 24
dds_key_descriptor::m_name (C++ member), 24
dds_key_descriptor_t (C++ type), 94
DDS_KIND_COND_QUERY (C++ class), 94
DDS_KIND_COND_READ (C++ class), 94
DDS_KIND_DONTCARE (C++ class), 94
DDS_KIND_INTERNAL (C++ class), 94
DDS_KIND_PARTICIPANT (C++ class), 94
DDS_KIND_PUBLISHER (C++ class), 94
DDS_KIND_READER (C++ class), 94
DDS_KIND_SUBSCRIBER (C++ class), 94
DDS_KIND_TOPIC (C++ class), 94
DDS_KIND_WAITSET (C++ class), 94
DDS_KIND_WRITER (C++ class), 94
DDS_LATENCYBUDGET_QOS_POLICY_ID (C
macro), 101
DDS_LENGTH_UNLIMITED (C macro), 92
DDS_LIFESPAN_QOS_POLICY_ID (C macro), 101
dds_listener_t (C++ type), 96
DDS_LIVELINESS_AUTOMATIC (C++ class), 103
DDS_LIVELINESS_CHANGED_STATUS (C macro),
29,119
dds_liveliness_changed_status (C++ class), 24
dds_liveliness_changed_status::alive_count (C++ mem-
ber), 24
dds_liveliness_changed_status::alive_count_change
(C++ member), 24

dds_liveliness_changed_status::last_publication_handle
(C++ member), 24
dds_liveliness_changed_status::not_alive_count
member), 24
dds_liveliness_changed_status::not_alive_count_change
(C++ member), 24
dds_liveliness_changed_status_t (C++ type), 111
dds_liveliness_kind (C++ type), 103
dds_liveliness_kind_t (C++ type), 102
DDS_LIVELINESS_LOST_STATUS (C macro), 29, 119
dds_liveliness_lost_status (C++ class), 24
dds_liveliness_lost_status::total_count (C++ member), 24
dds_liveliness_lost_status::total_count_change (C++
member), 24
dds_liveliness_lost_status_t (C++ type), 111
DDS_LIVELINESS_MANUAL_BY_PARTICIPANT
(C++ class), 103
DDS_LIVELINESS_MANUAL_BY_TOPIC
class), 103
DDS_LIVELINESS_QOS_POLICY_ID (C macro), 101
DDS_LUNSET (C macro), 95
DDS_MSECS (C macro), 118
DDS_NEVER (C macro), 118
DDS_NEW_VIEW_STATE (C macro), 92
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE
(C macro), 92
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
(C macro), 92
DDS_NOT_NEW_VIEW_STATE (C macro), 92
DDS_NOT_READ_SAMPLE_STATE (C macro), 92
DDS_NOT_REJECTED (C++ class), 112
DDS_NSECS_IN_MSEC (C macro), 118
DDS_NSECS_IN_SEC (C macro), 118
DDS_NSECS_IN_USEC (C macro), 118
DDS_OFFERED_DEADLINE_MISSED_STATUS (C
macro), 29, 119
dds_offered_deadline_missed_status (C++ class), 24
dds_offered_deadline_missed_status::last_instance_handle
(C++ member), 24
dds_offered_deadline_missed_status::total_count
member), 24
dds_offered_deadline_missed_status::total_count_change
(C++ member), 24
dds_offered_deadline_missed_status_t (C++ type), 111
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (C
macro), 29, 119
dds_offered_incompatible_qos_status (C++ class), 24
dds_offered_incompatible_qos_status::last_policy_id
(C++ member), 25
dds_offered_incompatible_qos_status::total_count (C++
member), 25
dds_offered_incompatible_qos_status::total_count_change
(C++ member), 25
dds_offered_incompatible_qos_status_t (C++ type), 111

(C++

(C++

(C++

Index

159

VortexDDS, Release 0.1.0

dds_on_data_available_fn (C++ type), 95
dds_on_data_on_readers_fn (C++ type), 95
dds_on_inconsistent_topic_fn (C++ type), 95
dds_on_liveliness_changed_fn (C++ type), 95
dds_on_liveliness_lost_fn (C++ type), 95
dds_on_offered_deadline_missed_fn (C++ type), 95
dds_on_offered_incompatible_qos_fn (C++ type), 95
dds_on_publication_matched_fn (C++ type), 95
dds_on_requested_deadline_missed_fn (C++ type), 95
dds_on_requested_incompatible_qos_fn (C++ type), 95
dds_on_sample_lost_fn (C++ type), 95
dds_on_sample_rejected_fn (C++ type), 95
dds_on_subscription_matched_fn (C++ type), 95
DDS_OP_ADR (C macro), 92
DDS_OP_FLAG_DEF (C macro), 93
DDS_OP_FLAG_KEY (C macro), 93
DDS_OP_JEQ (C macro), 93

DDS_OP_JSR (C macro), 93

DDS_OP_RTS (C macro), 92
DDS_OP_SUBTYPE_1BY (C macro), 93
DDS_OP_SUBTYPE_2BY (C macro), 93
DDS_OP_SUBTYPE_4BY (C macro), 93
DDS_OP_SUBTYPE_8BY (C macro), 93
DDS_OP_SUBTYPE_ARR (C macro), 93
DDS_OP_SUBTYPE_BOO (C macro), 93
DDS_OP_SUBTYPE_BST (C macro), 93
DDS_OP_SUBTYPE_SEQ (C macro), 93
DDS_OP_SUBTYPE_STR (C macro), 93
DDS_OP_SUBTYPE_STU (C macro), 93
DDS_OP_SUBTYPE_UNI (C macro), 93
DDS_OP_TYPE_1BY (C macro), 93
DDS_OP_TYPE_2BY (C macro), 93
DDS_OP_TYPE_4BY (C macro), 93
DDS_OP_TYPE_8BY (C macro), 93
DDS_OP_TYPE_ARR (C macro), 93
DDS_OP_TYPE_BOO (C macro), 93
DDS_OP_TYPE_BST (C macro), 93
DDS_OP_TYPE_SEQ (C macro), 93
DDS_OP_TYPE_STR (C macro), 93
DDS_OP_TYPE_STU (C macro), 93
DDS_OP_TYPE_UNI (C macro), 93
DDS_OP_VAL_IBY (C macro), 93
DDS_OP_VAL_2BY (C macro), 93
DDS_OP_VAL_4BY (C macro), 93
DDS_OP_VAL_8BY (C macro), 93
DDS_OP_VAL_ARR (C macro), 93
DDS_OP_VAL_BST (C macro), 93
DDS_OP_VAL_SEQ (C macro), 93
DDS_OP_VAL_STR (C macro), 93
DDS_OP_VAL_STU (C macro), 93
DDS_OP_VAL_UNI (C macro), 93
DDS_OWNERSHIP_EXCLUSIVE (C++ class), 103
dds_ownership_kind (C++ type), 102
dds_ownership_kind_t (C++ type), 102

DDS_OWNERSHIP_QOS_POLICY_ID (C macro), 101
DDS_OWNERSHIP_SHARED (C++ class), 102
DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ID (C
macro), 101
DDS_PARTITION_QOS_POLICY_ID (C macro), 101
dds_presentation_access_scope_kind (C++ type), 103
dds_presentation_access_scope_kind_t (C++ type), 102
DDS_PRESENTATION_GROUP (C++ class), 103
DDS_PRESENTATION_INSTANCE (C++ class), 103
DDS_PRESENTATION_QOS_POLICY_ID (C macro),
101
DDS_PRESENTATION_TOPIC (C++ class), 103
DDS_PUBLICATION_MATCHED_STATUS (C macro),
29,119
dds_publication_matched_status (C++ class), 25
dds_publication_matched_status::current_count
member), 25
dds_publication_matched_status::current_count_change
(C++ member), 25
dds_publication_matched_status::last_subscription_handle
(C++ member), 25
dds_publication_matched_status::total_count (C++ mem-
ber), 25
dds_publication_matched_status::total_count_change
(C++ member), 25
dds_publication_matched_status_t (C++ type), 111
dds_qos_t (C++ type), 102
dds_querycondition_filter_fn (C++ type), 30, 120
DDS_READ_SAMPLE_STATE (C macro), 92
DDS_READERDATALIFECYCLE_QOS_POLICY_ID
(C macro), 101
dds_realloc_fn_t (C++ type), 89
DDS_REJECTED_BY_INSTANCES_LIMIT
class), 112
DDS_REJECTED_BY_SAMPLES_LIMIT (C++ class),
112
DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
(C++class), 112
DDS_RELIABILITY_BEST_EFFORT (C++ class), 103
dds_reliability_kind (C++ type), 103
dds_reliability_kind_t (C++ type), 102
DDS_RELIABILITY_QOS_POLICY_ID (C macro),
101
DDS_RELIABILITY_RELIABLE (C++ class), 103
DDS_REQUESTED_DEADLINE_MISSED_STATUS
(C macro), 29, 119
dds_requested_deadline_missed_status (C++ class), 25
dds_requested_deadline_missed_status::last_instance_handle
(C++ member), 25
dds_requested_deadline_missed_status::total_count
(C++ member), 25
dds_requested_deadline_missed_status::total_count_change
(C++ member), 25
dds_requested_deadline_missed_status_t (C++ type), 111

(C++

(C++

160

Index

VortexDDS, Release 0.1.0

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
(C macro), 29, 119

dds_requested_incompatible_qos_status (C++ class), 25

dds_requested_incompatible_qos_status::last_policy_id
(C++ member), 25

dds_requested_incompatible_qos_status::total_count
(C++ member), 25

27
dds_sample_info:
dds_sample_info:
dds_sample_info:

:sample_rank (C++ member), 27
:sample_state (C++ member), 26
:source_timestamp (C++ member), 26
dds_sample_info::valid_data (C++ member), 26
dds_sample_info::view_state (C++ member), 26
dds_sample_info_t (C++ type), 30, 120

dds_requested_incompatible_qos_status::total_count_chang®DS_SAMPLE_LOST_STATUS (C macro), 29, 119

(C++ member), 25
dds_requested_incompatible_qos_status_t (C++ type),
111
dds_resource_limits_qospolicy (C++ class), 25

dds_resource_limits_qospolicy::max_instances (C++
member), 25
dds_resource_limits_qospolicy::max_samples (C++

member), 25

dds_sample_lost_status (C++ class), 27

dds_sample_lost_status::total_count (C++ member), 27

dds_sample_lost_status::total_count_change (C++ mem-
ber), 27

dds_sample_lost_status_t (C++ type), 111

DDS_SAMPLE_REJECTED_STATUS (C macro), 29,
119

dds_sample_rejected_status (C++ class), 27

dds_resource_limits_qospolicy::max_samples_per_instancedds_sample_rejected_status::last_instance_handle (C++

(C++ member), 25
dds_resource_limits_qospolicy_t (C++ type), 102

DDS_RESOURCELIMITS_QOS_POLICY_ID (C
macro), 101

DDS_RETCODE_ALREADY_DELETED (C macro),
90

DDS_RETCODE_BAD_PARAMETER (C macro), 90
DDS_RETCODE_ERROR (C macro), 90
DDS_RETCODE_ILLEGAL_OPERATION (C macro),

90
DDS_RETCODE_IMMUTABLE_POLICY (C macro),
90
DDS_RETCODE_INCONSISTENT_POLICY (C
macro), 90

DDS_RETCODE_NO_DATA (C macro), 90
DDS_RETCODE_NOT_ALLOWED_BY_SECURITY
(C macro), 90
DDS_RETCODE_NOT_ENABLED (C macro), 90
DDS_RETCODE_OK (C macro), 90
DDS_RETCODE_OUT_OF_RESOURCES (C macro),
90
DDS_RETCODE_PRECONDITION_NOT_MET (C
macro), 90
DDS_RETCODE_TIMEOUT (C macro), 90
DDS_RETCODE_UNSUPPORTED (C macro), 90
dds_sample_info (C++ class), 25
dds_sample_info::absolute_generation_rank (C++ mem-
ber), 27
dds_sample_info::disposed_generation_count
member), 26
dds_sample_info::generation_rank (C++ member), 27
dds_sample_info::instance_handle (C++ member), 26
dds_sample_info::instance_state (C++ member), 26
dds_sample_info::no_writers_generation_count
member), 27
dds_sample_info::publication_handle (C++ member), 26
dds_sample_info::reception_timestamp (C++ member),

(C++

(C++

member), 27
dds_sample_rejected_status::last_reason (C++ member),
27
dds_sample_rejected_status::total_count (C++ member),
27
dds_sample_rejected_status::total_count_change
member), 27
dds_sample_rejected_status_kind (C++ type), 112
dds_sample_rejected_status_t (C++ type), 111
dds_sample_state (C++ type), 30, 121
dds_sample_state_t (C++ type), 30, 119
DDS_SECS (C macro), 118
dds_sequence (C++ class), 27
dds_sequence::_buffer (C++ member), 27
dds_sequence::_length (C++ member), 27
dds_sequence::_maximum (C++ member), 27
dds_sequence::_release (C++ member), 27
dds_sequence_t (C++ type), 94
DDS_SST_NOT_READ (C++ class), 30, 121
DDS_SST_READ (C++ class), 30, 121
dds_stream (C++ class), 27
dds_stream::m_buffer (C++ member), 28
dds_stream::m_endian (C++ member), 28
dds_stream::m_failed (C++ member), 28
dds_stream::m_index (C++ member), 28
dds_stream::m_size (C++ member), 28
DDS_STREAM_BE (C macro), 116
DDS_STREAM_LE (C macro), 116
dds_stream_read_char (C macro), 116
dds_stream_read_int16 (C macro), 116
dds_stream_read_int32 (C macro), 116
dds_stream_read_int64 (C macro), 116
dds_stream_read_int8 (C macro), 116
dds_stream_t (C++ type), 117
dds_stream_write_char (C macro), 116
dds_stream_write_int16 (C macro), 116
dds_stream_write_int32 (C macro), 116

(C++

Index

161

VortexDDS, Release 0.1.0

dds_stream_write_int64 (C macro), 116 inst (C++ member), 89
dds_stream_write_int8 (C macro), 116 ‘
DDS_SUBSCRIPTION_MATCHED_STATUS (C max_wait (C++ member), 88

macro), 29, 119
dds_subscription_matched_status (C++ class), 28
dds_subscription_matched_status::current_count (C++

member), 28
dds_subscription_matched_status::current_count_change

(C++ member), 28
dds_subscription_matched_status::last_publication_handle

(C++ member), 28
dds_subscription_matched_status::total_count (C++

member), 28
dds_subscription_matched_status::total_count_change

(C++ member), 28
dds_subscription_matched_status_t (C++ type), 111
DDS_SUCCESS (C macro), 91
dds_time_t (C++ type), 118
DDS_TIMEBASEDFILTER_QOS_POLICY_ID (C

macro), 101
DDS_TO_STRING (C macro), 91
dds_topic_descriptor (C++ class), 28
dds_topic_descriptor::m_align (C++ member), 28
dds_topic_descriptor::m_flagset (C++ member), 28
dds_topic_descriptor::m_keys (C++ member), 28
dds_topic_descriptor::m_meta (C++ member), 28
dds_topic_descriptor::m_nkeys (C++ member), 28
dds_topic_descriptor::m_nops (C++ member), 28
dds_topic_descriptor::m_ops (C++ member), 28
dds_topic_descriptor::m_size (C++ member), 28
dds_topic_descriptor::m_typename (C++ member), 28
dds_topic_descriptor_t (C++ type), 94
dds_topic_filter_fn (C++ type), 30
DDS_TOPIC_FIXED_KEY (C macro), 92
DDS_TOPIC_NO_OPTIMIZE (C macro), 92
DDS_TOPICDATA_QOS_POLICY_ID (C macro), 101
DDS_TRANSPORTPRIORITY_QOS_POLICY_ID (C

macro), 101
dds_uptr_t (C++ type), 28
dds_uptr_t::p16 (C++ member), 28
dds_uptr_t::p32 (C++ member), 28
dds_uptr_t::p64 (C++ member), 28
dds_uptr_t::p8 (C++ member), 28
dds_uptr_t::pd (C++ member), 28
dds_uptr_t::pf (C++ member), 28
dds_uptr_t::pv (C++ member), 29
DDS_USECS (C macro), 118
DDS_USERDATA_QOS_POLICY_ID (C macro), 101
dds_view_state (C++ type), 30, 121
dds_view_state_t (C++ type), 30, 119
DDS_VST_NEW (C++ class), 30, 121, 122
DDS_VST _OLD (C++ class), 30, 121, 122
DDS_WRITERDATALIFECYCLE_QOS_POLICY_ID

(C macro), 101

162 Index

	Install VortexDDS
	System requirements
	Linux
	Ubuntu
	Red Hat
	Tarball
	Paths

	Windows
	MSI
	ZIP

	Test your installation
	License

	Building VortexDDS applications
	Building the Hello World! example
	Build Files
	Linux Native Build
	Windows Native Build

	Building With CMake
	CMake
	Hello World! CMake (VortexDDS Package)
	Hello World! Configuration
	Hello World! Build

	Summary

	Hello World! in more detail
	Hello World! DataType
	Data-Centric Architecture

	HelloWorldData.idl
	Hello World! IDL
	Generate Sources and Headers
	HelloWorldData.c & HelloWorldData.h

	Hello World! Business Logic
	Hello World! Subscriber Source Code
	Hello World! Publisher Source Code

	What’s next?
	The OMG DDS Specification
	AdLink Documentation and Tutorials
	AdLink on Youtube and Slideshare
	AdLink on Social Media
	The DDS community
	Support

	Uninstalling VortexDDS
	Linux
	Windows
	Original MSI
	Apps & features

	Vortex DDS C API Reference
	Indices and tables

